CONTENTS

 II Acknowledgements	iii v vi ix 1
 III Owlstone Limited IV Glossary V Abbreviations 1 INTRODUCTION	vi ix 1
 IV Glossary V Abbreviations	vi ix 1
 V Abbreviations	ix 1
1 INTRODUCTION	1
1 INTRODUCTION. 1.1 General overview	1
 1.1 General overview 1.1.1 Technology overview 1.1.2 Thesis overview 	1
1.1.1 Technology overview1.1.2 Thesis overview	
1.1.2 Thesis overview	1
	4
1.2 History of ion mobility dependent technology	7
1.2.1 Discovery of ion mobility and early investigations	7
1.2.2 Re-engagement with ion mobility	9
1.2.3 Refinement of IMS and the creation of FAIMS	
1.3 Miniaturised and <i>in situ</i> analytical systems	14
1.4 Operation of IMS	16
1.4.1 Miniaturisation of IMS devices	20
1.5 Operation of FAIMS	23
1.6 FAIMS design	
1.6.1 Cylindrical separation region	
1.6.2 Planar separation region	
1.6.3 Variations on FAIMS design	
1.7 References	
2 THEORY	43
2 1 Introduction	43 43
2.1 Introduction	
2.2 Formation of positive reactive ions	
2.2.1 Formation of positive reactive ions	46
2.2.2 Formation of negative rederive fors	46
2.2.4 Formation of pegative product ions	47
2.3 Types of interaction	48
2.3.1 Scattering through direct contact	48
2.2.1 Electic acettaring due to a locitor interaction	49
z_{2} z_{2} Elastic scattering due to polarisation interaction	40
2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer	49
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 	49 50
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 	49 50 51
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 2.4 Drift velocity 	49 50 51 52
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 2.4 Drift velocity 2.4.1 Symmetry considerations 	
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 2.4 Drift velocity 2.4.1 Symmetry considerations	
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 2.4 Drift velocity 2.4.1 Symmetry considerations 2.4.2 Momentum transfer theory 2.4.3 Drift velocity through constant acceleration 	
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 2.4 Drift velocity 2.4.1 Symmetry considerations 2.4.2 Momentum transfer theory 2.4.3 Drift velocity through constant acceleration 2.4.4 Drift velocity through mean free path 	
 2.3.2 Elastic scattering due to polarisation interaction 2.3.3 Resonant charge transfer 2.3.4 Change in shape/identity of ion 2.3.5 Clustering and de-clustering of ions 2.4 Drift velocity 2.4.1 Symmetry considerations 2.4.2 Momentum transfer theory 2.4.3 Drift velocity through constant acceleration 2.4.4 Drift velocity through mean free path 2.5 Energy	

	2.5.2	Interactions between ions and neutrals	60
	2.5.3	<i>E/N</i> ratio	60
	2.6 Ph	ysical properties	63
	2.6.1	Residence time	63
	2.6.2	Reynolds number and turbulent flow	64
	2.7 Pos	sition of ions within planar FAIMS	65
	2.7.1	Translational position of ion	66
	2.7.2	Effective gap height	69
	2.7.3	Effect of changing the frequency of waveform	70
	2.8 Mo	odifying the geometry of electrodes	72
	2.8.1	Modifying the width and length of the separation region	72
	2.8.2	Modifying the gap height of the separation region	73
	2.9 Dif	fusional loss	74
	2.9.1	Full width at half maximum (FWHM)	76
	2.10 Im	posed limits of operation	78
	2.10.1	Breakdown voltage and Paschen's law	78
	2.10.2	Space charge effect	79
	2.11 Co	nclusion	81
	2.12 Re	ferences	82
3	INST	RUMENTATION	.85
	3.1 Int	roduction	85
	3.1.1	Overview of experiments	85
	3.2 Co	nsumables and gauges	86
	3.2.1	Gas supply - air	86
	3.2.2	Gas supply - nitrogen	87
	3.2.3	Pressure regulation	87
	3.2.4	Flow controllers and meters	88
	3.2.5	Management of humidity and volatiles	88
	3.2.6	Flow path	89
	3.3 Ke	v apparatus	89
	3.3.1	Lonestar unit	89
	3.3.2	Owlstone FAIMS sensor	99
	3.3.3	Gas chromatography (GC)	100
	3.4 Te	chniques for sample introduction	103
	3.4.1	Permeation sources	103
	3.5 CA	SE STUDY 1: Detection of dimethylmethylphosphonate (Experiment 1)	108
	3.5.1	Experimental set-up and parameters	108
	3.5.2	Blank response	111
	3.5.3	Stability	114
	3.6 CA	SE STUDY 2: Detection of ethyl acetate within wine (Experiment 2)	115
	3.6.1	Experimental set-up and parameters	116
	3.6.1 3.6.2	Experimental set-up and parameters Blank response	116 118
	3.6.1 3.6.2 3.7 Re	Experimental set-up and parameters Blank response ferences	116 118 122

4	PEAK	FITTING	123
	4.1 Intr	oduction	123
	4.1.1	Mixed signals	124
	4.1.2	Molecular-ion response	126
	4.1.3	Information from a single CV sweep	128
	4.1.4	Improving the limit of detection	129
	4.1.5	Assumptions and limits	130
	4.2 Pro	cedures prior to peak fitting	131
	4.2.1	Data organisation	131
	4.2.2	Baseline modification	132
	4.2.3	Defining a noise threshold	136
	4.2.4	Initial peak isolation	137
	4.3 Isol	ation of maximums	137
	4.3.1	Initial estimate of peak intensity and position	137
	4.3.2	FWHM of the initial peak	138
	4.3.3	Constructing and storing the initial peak	139
	4.3.4	Further Gaussian peak fits	141
	4.4 Pea	k estimation through differentiation	142
	4.4.1	Methodology of peak isolation	142
	4.4.2	Effect of smoothing data set	144
	4.5 Pea	k isolation through Successive Gaussians	146
	4.5.1	Methodology of Successive Gaussians	146
	4.5.2	Results from Successive Gaussian method	148
	4.5.3	Prioritisation within Successive Gaussian method	150
	4.6 Fina		153
	4.6.1	Final peak fit procedure	155
	4.0.2	Recording and storing of final peak fit	155
	4./ LIII	Limitations of presented peak fluing	155
	4.7.1	Limitations: isolation of maximums	150
	4.7.2	Limitations: differential	157
	4.7.3	Limitations: Successive Gaussians	150
	4.0 Ma	dification of the original data set	150
	4.9 MIO	Smoothing of data	160
	4.9.1	Extending the data set	163
	4.9.2	Extending the data set	167
	4.10 Con 4.11 Ref	erences	169
	4.11 IU		107
5	CASE	STUDV 1. Characterisation of parameters influencing the	
J	CASE	of the Owlstone EAIMS sonson	171
þ		ice of the Owistonie FAIIVIS sensor	171
	5.1 Intr	Concerned properties of DMMD	1/1
	5.1.1 5.1.2	The response of DMMP in a FAIMS system	172
	5.1.2	The response of DiviniP in a FAINIS system	174
	5.2 Ope	Data collection	174
	J.2.1 5 2 2	Calculation of errors	174
	5.2.2 5.2.2	Calculation of chois	175 176
	J.2.3	Equivalent Env	170
	5.5 FIE	Initially investigations	170
	537	CV position of reactant ions	1/9 101
	532	EWHM of reactant ions	101
	5.5.5	1 11 1111 UI IVAVIAIII IVIIO	104

xiii

	5.4.	1 DF	sweeps with DMMP	186
	5.5	Constant	t <i>E/N</i> with DMMP	189
	5.5.	1 Ion	intensity at a constant <i>E/N</i>	192
	5.5.	2 Con	npensation voltage at a constant <i>E/N</i>	196
	5.5.	3 FW	HM at a constant <i>E</i> / <i>N</i>	204
	5.6	Conclus	ion	207
	5.7	Reference	ces	212
6	CA	SE STU	UDY 2: Detection of ethyl acetate in wine	.213
	6.1	Introduc	tion	213
	6.2	The grad	ling of wine	213
	6.3	Ethyl ac	etate in wine	216
	6.4	Ethyl ac	etate	218
	6.5	Experim	iental set-up	219
	6.6	Prelimin	ary work	219
	6.6.	1 Opti	imisation of DF and carrier flow	220
	6.6.	2 GC	column temperature and splitless injection	221
	6./	Data col	lection	222
	0.8	1 Diet	sung	223
	0.0. 6.8	1 Dist 2 Win	aneu water spikeu with ethyl acetate	227
	6.9	Z will Reason f	for reduction in signal	229
	6.10	Further of	optimisation of the analysis of ethyl acetate	236
	6.11	Elevated	pressure of carrier flow	237
	6.11	.1 Equ	ivalent <i>E/N</i> under an elevated pressure	
	6.11	1.2 Equ	ivalent DF using an elevated pressure carrier flow	241
	6.11	1.3 Incr	eased losses attributable to diffusion	244
	6.11	1.4 Dete	ection of ethyl acetate using high pressure carrier flow	248
	6.12	Conclus	ion	251
	6.13	Reference	ces	254
_	00		SIONS	257
1				.257
	/.1	Discussi	on and further work	257
	7.1. 7.1	1 1 Ine	ory related to FAIMS	237
	7.1.	2 Fear 3 Cha	ractarisation of parameters	239
	7.1.	J Cha 4 Dete	ection of ethyl acetate in wine	200
	7.2	Conclud	ing remarks	
		00110100		
A	PPEN	DIX A	: Solvent effect	265
A	PPEN	IDIX B	: Momentum transfer theory	
A	PPEN	JDIX C	Drift velocity	273
Δ	PPEN		 Energy resulting from interactions of ions and neutrals 	275
Δ	PPEN	JDIX E	 Pressure and ion motion within separation region 	
1	E.I	Pressure	effects on longitudinal ion motion	
	E.II	Pressure	effects on transverse ion motion	
A	PPEN	IDIX F	: Waveforms	280
× 1	F.I	Suitable	waveform	
	F.II	Practical	l waveforms	
A	PPEN	IDIX G	• Modelling permeation rates from permeation sources	286
	1		interesting permeation rates from permeation sources	200

APPEN	DIX H: Tracking peaks	
H.I	Situation	
H.II	Worked example	
H.III	Isolating desired data	
H.IV	Creating replacements for missing data	
H.V	Curve fit and extraction of equation	
H.VI	Summary	
APPEN	IDIX I: Ion velocity and displacement with respect to <i>E/N</i>	
Appendix references		

LIST OF FIGURES

Figure 1.1 Schematic and photograph of Lovelock's vapour anemomete	10
Figure 1.2 Pictorial representation of the apparatus created by Albritton	11
Figure 1.3 Schematic of a simple IMS device	16
Figure 1.4 High resolution IMS/MS and lightweight chemical detector	20
Figure 1.5 Hypothetical example of selectivity by choice of carrier gas	22
Figure 1.6 Ideal waveform for use within a FAIMS	24
Figure 1.7 Plot of mobility vs. E/p for ions in helium	25
Figure 1.8 Typical mobility characteristics of the three different α identities	26
Figure 1.9 Different effective trajectories of the three alpha identities	26
Figure 1.10 Typical response from a FAIMS device	30
Figure 1.11 Positive mode response after introducing acetone.	30
Figure 1.12 Two ions responses with different FWHM	31
Figure 1.13 Cylindrical FAIMS device	33
Figure 1.14 Domed cylindrical FAIMS device	34
Figure 1.15 Photograph of micro-machined FAIMS	35
Figure 2.1 Defininition of geometry and orientation of example separation region	44
Figure 2.2 DF sweeps of methyl salicylate in positive and negative polarity	50
Figure 2.3 Dimethylmethylphosphonate monomer and dimer peak positions	61
Figure 2.4 Townsend scaled dimethylmethylphosphonate monomer and dimer peak	62
Figure 2.5 An idealised asymmetric waveform	66
Figure 2.6 Cut away through the length of a separation region	70
Figure 2.7 Diffusion loss	75
Figure 2.8 FWHM and residence time	77
Figure 2.9 Breakdown voltage	79
Figure 3.1 Owlstone Lonestar unit	90
Figure 3.2 Internal flow path within a Lonestar unit	92
Figure 3.3 Sample line flow dependence	94
Figure 3.4 Unit housing Owlstone FAIMS sensor	97
Figure 3.5 Internal flow path within a Lonestar for high pressure studies	98
Figure 3.6 a) Owlstone FAIMS sensor chip b) sensor close-up c) SEM image of sensor	r.99
Figure 3.7 Layout of Owlstone FAIMS sensor	. 100
Figure 3.8 The SRI-GC	. 101
Figure 3.9 Schematic illustrating the union between the SRI-GC and FAIMS unit	. 102
Figure 3.10 A permeation source with components listed	. 103
Figure 3.11 Owlstone vapour generator	. 105
Figure 3.12 Mass loss of several permeation sources	. 107
Figure 3.13 a) Flow path of Experiment 1, b) photograph of apparatus	. 109
Figure 3.14 Blank DF sweeps from Experiment 1	.112
Figure 3.15 The RIP from the positive mode	. 113
Figure 3.16 Two CV sweeps from Experiment 1	. 114
Figure 3.17 a) CVof five DF sweeps b) Peak intensity of five DF sweeps	. 115
Figure 3.18 a) Flow path of Experiment 2, b) photograph of apparatus	. 116
Figure 3.19 Contour fill plot of blank response.	. 118
Figure 3.20 CV sweeps taken at the beginning of the blank run	. 119

Figure 3.21 CV positions and peak intensity of the peak ion response	.120
Figure 3.22 CV sweeps corresponding to features highlighted in Figure 3.33	.121
Figure 4.1 Simulated CV sweep	.124
Figure 4.2 Simulated CV sweep typical of unresolved ion species	.125
Figure 4.3 Manufactured response representative of three ion species	.126
Figure 4.4 a) to e) CV spectra of the five regulated Haloacetic acids f) ESI-MS of the	
same solution. g) ESI-FAIMS-MS of the same solution	.127
Figure 4.5 CV sweep of the Reactive Ion Peak	.128
Figure 4.6 Example of a single CV sweep from an unmodified experimental run	.132
Figure 4.7 Data points attribted to ion response and background noise	.134
Figure 4.8 The fitted curve to non-window region depicted in Figure 4.7	.135
Figure 4.9 Noise threshold and baseline corrected raw data	.136
Figure 4.10 Points used to discover the eventual estimate for the FWHM	.139
Figure 4.11 Baseline corrected data and initial Gaussian peak	.140
Figure 4.12 a) Initial peak b) second peak fitted minus the initial peak, c) to e) process	1 4 1
continues I) baseline corrected data is plotted alongside Gaussians fitted	.141
Figure 4.13 a) Second differential from unsmoothed data, b) resultant peak fit c) second	d 145
differential and peaks made from smoothed data set, d) resultant peak fit.	.145
Figure 4.14 Contour plot of the confidence array	148
Figure 4.15 Highlighted region of Figure 4.14.	149
Figure 4.10 Original CV spectra alongside peak fits	150
Figure 4.17 All example of the Successive Gaussian method	154
Figure 4.10 Simulated response from three ion species and returned erroneous EWHM	157
Figure 4.19 Simulated response from a thermal desorption-gas chromatography-EAIMS	157
experiment	160
Figure 4.21 a) to c) CV sweeps with successively greater levels of smoothing	162
Figure 4.22 The original data points with interpolated and extrapolated data	164
Figure 4.23 Differential and peaks from non-interpolated and interpolated data	.166
Figure 5.1 DMMP response in positive polarity	.173
Figure 5.2 Example peak fitting of DMMP at DF strengths of a) 10 b) 30 and c) 50%	.175
Figure 5.3 DF sweep of DMMP at a pressure of 120 kPa	.178
Figure 5.4 Peak of RIP response at a) flow rate 2.5 l/min and b) pressure of 120 kPa	.180
Figure 5.5 CV displacement of the same data presented within Figure 5.4	.182
Figure 5.6 FWHM of the same data presented within Figure 5.4	.184
Figure 5.7 Full DF sweeps at various flow rates	.186
Figure 5.8 Full DF sweeps at various carrier flow pressures	.187
Figure 5.9 Full DF sweeps at various carrier flow humidities	.188
Figure 5.10 Total product ion area at an <i>E/N</i> of 110.2 Td	.191
Figure 5.11 a) Monomer and b) dimer intensity at variable pressures and flow rates	.193
Figure 5.12 a) Monomer and b) dimer intensity at variable pressures and flow rates	.195
Figure 5.13 CV displacement of the a) monomer and b) dimer DMMP ion species	.197
Figure 5.14 CV displacement of the a) monomer and b) dimer DMMP ion species	.200
Figure 5.15 FWHM of the a) monomer and b) dimer DMMP ion species	.204
Figure 5.16 FWHM of the a) monomer and b) dimer DMMP ion species	.206
Figure 5.17 Plots originally from a) Figure 5.11 and b) Figure 5.14	.210
Figure 6.1. Demonstrage of independents as mostly identified	01 5
Figure 6.1 Percentage of judgements correctly identified	.213
Figure 6.2 Jun response versus retention time	.223
Figure 6.4 The response obtained in the CC EAIMS system	,224 227
Figure 0.4 The response obtained in the OC-FAINIS system	.∠∠1

Figure 6.5 Responses from samples of distilled water spiked with ethyl acetate	229
Figure 6.6 Response obtained in the GC-FAIMS system	230
Figure 6.7 Signal isolated at peak response of ethyl acetate	232
Figure 6.8 Ethyl acetate spiked solutions with various solvents	233
Figure 6.9 The response obtained for ethyl acetate within distilled water, and wine	235
Figure 6.10 CV of peak response of ethyl acetate from the GC-FAIMS system	239
Figure 6.11 Ion response of ethyl acetate solvents of distilled water and 12% ethanol.	242
Figure 6.12 Responses obtained from the GC-FAIMS system	243
Figure 6.13 Responses obtained for high concentrations of ethyl acetate	245
Figure 6.14 Reponses obtained from the GC-FAIMS system	246
Figure 6.15 Reponses obtained from the GC-FAIMS system	247
Figure 6.16 The response from ethyl acetate at various concentrations	249
Figure 6.17 Peak intensity of ethyl acetate response at various concentrations	250
Figure F.1 Waveform profile utilised by an Owlstone FAIMS sensor	284
Figure G.1 Schematic of permeation source	286
Figure H.1 The ion intensities of fitted peaks displayed in CV order	291
Figure H.2 The CV position of the maximum of fitted peaks	291
Figure H.3 Fitted maximum peak intensity during an EDF experiment.	292
Figure H.4 CV positions of the maximum fitted peak	293
Figure H.5 Data as depicted within Figure H.4 includiing the mean CV value	294
Figure H.6 This is the same data as in Figure H.3 with only suitable CV positions	295
Figure H.7 Nearest neighbour running mean	297
Figure H.8 Filtered data shown alongside replacement data	298
Figure H.9 The natural logarithm and line of best fit of the amended data	299
Figure H.10 Raw data plotted alongside fitted exponential	300
Figure H.11 Linear and higher order line of best fit of the Ln of the amended data	301
Figure I.1 The velocity and displacement of two ions	304
Figure I.2 The velocity and displacement of two ions	305
Figure I.3 The velocity and displacement of two ions	306

LIST OF TABLES

Table 1.1	Chapter contents	6
Table 3.1	List of experiments	86
Table 3.2	Technical specifications of Owlstone Lonestar	91
Table 3.3	Settings available through the Lonestar software	96
Table 3.4	Characteristics of the Lonestar FAIMS sensor	100
Table 3.5	Technical specifications of Owlstone vapour generator.	106
Table 3.6	Experimental parameters of Experiment 1	110
Table 3.7	Experimental parameters of Experiment 2	117
Table 5.1	General properties of DMMP	172
Table 5.2	Permanent dipole moments and bond lengths of H ₂ O, O ₂ and N ₂	199
Table 5.3	Time between successful ion and water molecule interactions	202
Table 6.1	General properties of ethyl acetate	218
Table 6.2	List of proton affinities	218
Table 6.3	Operational settings of initial testing for the detection of ethyl acetate	226
Table H.1	Selection of filtered data from example data set	297