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Introduction and Overview Results: FAIMS-MS Results: IM-MS 

• 3-Methylxanthine (3-MX) is shown to self-assemble in the gas phase to form clusters around 

a stabilising cation (Fig. 1), which have been analysed using MS, FAIMS-MS and IM-MS. 

 

• Supramolecular structures of 3-MX, where 3-MX forms tetrameric non-covalently bound 

structures around a NH4
+, Na+ and K+ cation have all been observed (Fig. 3) in agreement 

with Szolomájer et al2.   

 

• Clustering of 3-MX from single tetrameric complexes to higher-ordered quadruplex 

complexes of up to six 3-MX tetramers has been observed using FAIMS-MS in the presence 

of Na+ (Table 1). The focus of this preliminary study is on these monomeric and singly 

charged tetrameric complexes of 3-MX with sodium.  
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Figure  1: Structure of 3-

methylxanthine (3-MX) 

non-covalently bound 

tetramer ([(3-MX)4+Cat]+) 

with stabilising cation 

(NH4
+, Na+ or K+) 
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Figure 3: Mass spectra (no FAIMS) showing 

observed single tetrameric 3-MX species 

prepared in 1 mM sodium hydroxide 

3-MX Complex m/z 

[(3-MX)+Na]+ 189.04 

[(3-MX)4+Na]+ 687.18 

[(3-MX)8+Na]+ 1351.38 

[(3-MX)12+2Na-H]+ 2037.55 

Table 1: 3-MX monomer and 

singly charged tetrameric 

complexes  

• FAIMS-MS has been used for the analysis of non-covalent complexes formed by 3-MX. The 

singly charged (3-MX)n (n = 4-12) complexes show maximum FAIMS transmission at different 

CF values, with the optimum CF decreasing as the size of the cluster increases (Fig. 4).  

 

• The signal-to-noise (S:N) ratio of low abundance multiply charged species (Fig. 5) can be 

improved using FAIMS selection prior to MS analysis.  

 

• Separation of 3-MX complexes with different charge states can be achieved (Fig. 6) using 

FAIMS selection of the appropriate charge state (Fig. 6 (d)). 
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Compensation Field (Td) 
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Figure 4: SIRs for a 

CF scan at DF = 323 

Td for singly 

charged tetrameric 

3-MX complexes 

Figure 5: Mass spectra of 3-MX complexes (a) no FAIMS selection 

(singly charged 3-MX species labelled), (b) [insert] doubly 

charged (3-MX)20 species with Na+ with FAIMS-selection (DF = 259 

Td, CF = 1.2 Td), which doubles the S:N ratio for these species 
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3-MX Complex m/z CCS (Å2) ± 3 SD (Å2) 

[(3-MX)+Na]+ 189.04 79 3 
[(3-MX)4+Na]+ 687.18 180 2 
[(3-MX)8+Na]+ 1351.38 258 2 

[(3-MX)12+2Na-H]+ 2037.55 338 2 

Table 2: Experimentally measured CCS of [(3-MX)+Na]+ 

singly charged tetrameric complexes 

• IM-MS analysis of the sodium doped 3-MX complexes was used to determine the CCS of 

the singly charged tetrameric complexes. 
 

• Experimentally measured CCS values (Fig. 7) were determined using peptide standards of 

known CCS (Table 2). 
 

• Preliminary modelling of [(3-MX)4+Na]+ indicates a CCS of 184 Å2, in agreement with the 

experimental data.  

• IMS analysis combined with tandem MS (Fig. 8) allowed for further structural analysis of the 

fragmentation of these tetrameric 3-MX complexes in the gas phase. 
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• Higher-ordered structures based on the self-assembly of simpler 

molecules are of interest in a variety of fields including structural 

biology, nanotechnology and supramolecular chemistry1.  
 

• Modified purine bases such as 3-methylxanthine (3-MX) have 

been found to self-assemble in the presence of alkali metals and 

ammonium cations (Fig. 1) in the gas phase and in solution2. 
 

• Miniaturised high-field asymmetric waveform ion mobility 

spectrometry (FAIMS) and  travelling wave drift tube ion mobility 

spectrometry (IMS), both combined with mass spectrometry 

(MS), have been used to investigate self-assembling, non-

covalent complexes of 3-MX in the gas phase.  
 

• Travelling wave IMS (TWIMS) analysis has been used to 

determine collision cross sections (CCS) of selected 3-MX 

complexes. 

Methods 

• 3-MX solutions were analysed by drift tube IMS using a Waters Synapt HDMS spectrometer 

(Waters Corporation) fitted with a TWIMS drift cell, operated in IM-MS and IM-MS/MS modes. 

ESI conditions were capillary voltage: 3.0 kV; sampling cone: 20 L/hr; extraction cone: 4 L/hr; 

source temperature: 120 °C; desolvation temperature: 200 °C; desolvation gas flow: 400 L/hr. 

TWIMS analysis was performed with the  travelling wave height at 7.5–12 V and 8–14 V with 

the N2 drift gas set to 24 mL/min and the pusher interval set to 64 µs. The CCS of selected 3-

MX clusters were determined using peptide compounds of known CCS measured in helium.  
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Figure 2: (a) Photograph of FAIMS-MS; (b) schematic diagram of the interface 

of the ion source of the TOF-MS and the chip-based FAIMS device  

• 3-Methylxanthine was prepared as a 0.5 mM solution in 60:40 methanol:water with 1 mM 

ammonium  acetate, or with 1 mM sodium hydroxide, to promote the formation of 3-MX 

clusters with Na+, and to enable the detection of higher-ordered clustered 3-MX structures.  

 

• 3-MX solutions were analysed by FAIMS using an Agilent 6230 TOF MS (Agilent Technologies) 

with a Jet Stream ESI source, combined with a prototype miniaturised chip-based FAIMS 

device (Owlstone Ltd., Cambridge), located in front of the mass spectrometer inlet capillary 

(Fig. 2). The FAIMS device consists of multiple planar electrode channels each with a 100 µm 

gap and an electrode length of 700 µm.  
 

• The TOF MS experimental conditions in positive ion mode were: drying gas: 8 L/min at 150 °C; 

sheath gas: 10 L/min at 200 °C; nebuliser gas: 30 psig; capillary voltage: 3.5 kV; nozzle 

voltage: 2 kV; fragmentor voltage: 150–250 V; and a sample flow rate of 10 µL/min using a 

syringe pump. The optimum FAIMS conditions for the selective transmission of the different 3-

MX clusters, singly, doubly and multiply charged species, were determined by conducting a 

compensation field (CF) sweep from -2 to 5 Td at a rate of 0.5 Td/sec, for dispersion fields 

(DF) in the range 194 to 323 Td.  

Conclusions 
• Hyphenation of FAIMS-MS and IM-MS has been used for the analysis of 3-MX complexes.  

• This preliminary study into the structural analysis of 3-MX complexes shows a complexity of 

non-covalently clustered structures.  

• FAIMS selection has been used for the separation of overlapping charge states of 3-MX 

complexes. 

• Increased S:N ratio is observed for higher-order 3-MX complexes using FAIMS-MS. 

• 3-MX singly charged complexes formed in the presence of sodium show different CF values 

for maximum ion transmission.  

• TWIMS-MS analysis has been used to determine the CCS of selected singly charged 3-MX 

complexes. 

• Tandem MS combined with IMS has been used to obtain ion mobility spectra of 3-MX 

fragments.  

x104 

0 

4 

1351.39 

x104 

0 

5 

1351.39 

x103 

0 

2 

1362.88 

1373.87 

Counts vs. Mass-to-Charge (m/z) 

1352 1356 1360 1364 1368 1372 1376 1380 1384 1388 1392 1396 

x103 

0 

2 

4 

6 
1373.37 

1362.88 1367.36 1395.35 

1360 1364 1368 1372 1376 1380 1384 1388 1392 1396 

x103 

0 

2 

4 

6 1373.37 
1367.36 

1395.35 

1360 1364 1368 1372 1376 1380 1384 1388 1392 1396 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 2 4 

S
ig

n
a

l 
In

te
n

s
it

y
 

Compensation 
Field (Td) 

Figure 6: Separation of 3-MX (+Na+) complexes with different charge states using 

FAIMS (DF = 323 Td); (a) no FAIMS, (b) FAIMS selection of the singly charged species 

(CF = 1.7 Td) and (c) FAIMS selection of the doubly charged species (CF = 2.85 Td); (d) 

FAIMS CF scan at DF = 323 Td (selected ion responses) 
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Figure 7: Ion mobility spectra 

of [(3-MX)+Na]+ singly charged 

tetrameric complexes 
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Figure 8: Tandem MS of [(3-MX)8+Na]+: (a) ion 

mobility profiles (wave height 8-14 V with trap 

CE at 14 V); (b) product ion mass spectrum 

showing [(3-MX)8+Na]+ fragments 


