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Abstract

Background and Aims: The prevalence of chronic liver dis-
ease in adults exceeds 30% in some countries and there is 
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significant interest in developing tests and treatments to help 
control disease progression and reduce healthcare burden. 
Breath is a rich sampling matrix that offers non-invasive so-
lutions suitable for early-stage detection and disease moni-
toring. Having previously investigated targeted analysis of 
a single biomarker, here we investigated a multiparametric 
approach to breath testing that would provide more robust 
and reliable results for clinical use. Methods: To identify can-
didate biomarkers we compared 46 breath samples from cir-
rhosis patients and 42 from controls. Collection and analysis 
used Breath Biopsy OMNI™, maximizing signal and contrast 
to background to provide high confidence biomarker detec-
tion based upon gas chromatography mass spectrometry 
(GC-MS). Blank samples were also analyzed to provide de-
tailed information on background volatile organic compounds 
(VOCs) levels. Results: A set of 29 breath VOCs differed 
significantly between cirrhosis and controls. A classification 
model based on these VOCs had an area under the curve 
(AUC) of 0.95±0.04 in cross-validated test sets. The seven 
best performing VOCs were sufficient to maximize classifica-
tion performance. A subset of 11 VOCs was correlated with 
blood metrics of liver function (bilirubin, albumin, prothrom-
bin time) and separated patients by cirrhosis severity using 

principal component analysis. Conclusions: A set of seven 
VOCs consisting of previously reported and novel candidates 
show promise as a panel for liver disease detection and mon-
itoring, showing correlation to disease severity and serum 
biomarkers at late stage.
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Introduction
Progression of chronic liver diseases to cirrhosis is often 
asymptomatic, with more than 50% of the cases diagnosed 
at advanced stages with clinical decompensation, when ther-
apeutic interventions are often ineffective for preserving liver 
function.1,2 Early detection is still limited by available diag-
nostic tests, which are inadequate for population screening 
or lack the required sensitivity or specificity. The gold stand-
ard remains liver biopsy despite the proliferation of non-in-
vasive surrogate imaging techniques and serological mark-
ers.3 These tests also rely on anatomical alterations rather 
than hepatic function and are mainly effective at advanced 
stages.2–4 Additionally, absence of non-invasive functional 
tests represents a hurdle for clinical outcome evaluation of 
therapeutic interventions.

Analysis of volatile organic compounds (VOCs) in exhaled 
breath represents an emerging diagnostic approach with the 
potential to develop functional, non-invasive tests for early 
detection based on the reduced hepatic function associated 
with chronic liver diseases, especially clearance and protein 
synthesis capacity.5–8 Impaired hepatic function shifts the 
spectrum of compounds detoxified by the liver. A subset of 
these can be measured in breath as VOCs and are potential bi-
omarkers.8–13 In our previous study,8 limonene, an exogenous 
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VOC taken-up mainly through the diet, was elevated in the 
breath of patients with cirrhosis and had diagnostic potential 
in agreement with previous exploratory studies.10,14 This com-
pound is metabolized in the liver by the enzymes CYP2C9 and 
CYP2C19 to trans-carveol and perillyl alcohol.15 In the cirrhotic 
liver, reduced activity of these enzymes impairs hepatic clear-
ance, resulting in extended limonene half-life in the blood-
stream, which in turn, raises its abundance in the breath.10 
We additionally showed that limonene correlated with blood 
metrics that reflect hepatic clearance and protein synthesis 
capacity, indicating that a limonene breath test could be ap-
plied as functional means for chronic liver disease detection.8

Nonetheless, the complexity of hepatic metabolic path-
ways does not allow a comprehensive evaluation of liver func-
tion from a single biomarker. Thus, combination of multiple 
VOCs generated by alterations of different metabolic path-
ways provides a more exhaustive picture of the liver condi-
tion, improving diagnostic performances of a breath test and 
providing the potential to detect early-stage liver disease. 
To these purposes, we used Breath Biopsy OMNI global VOC 
analysis to discover differentially abundant VOCs in patients 
with cirrhosis, compared to controls in order to identify po-
tential disease-related biomarkers that could be used to di-
agnose patients with progressive liver disease, from early to 
end stage, in large-scale cohorts.

Methods

Study design and subjects
This cross-sectional case-control study was part of the Owl-
stone Medical (Cambridge, UK) and Cancer Research UK 
(CRUK) funded PAN-study (NCT03756597, US National Li-
brary of Medicine), and was approved by the ethics commit-
tee of the East of England–Cambridge East Research Ethics 
Committee (REC reference: 18/EE/0041. IRAS ID: 237560). 
All participants provided written informed consent. A total of 

46 subjects with cirrhosis, and 42 controls were enrolled with 
random recruitment. Subjects >30 years of age were recruit-
ed from the clinical research facility at Addenbrooke’s Hos-
pital (Cambridge) or through the Cambridge BioResource. 
Patients had an established histological or radiological diag-
nosis of cirrhosis according to European Association for the 
Study of the Liver and American Association for the Study of 
Liver Diseases guidelines.16,17 Disease severity was classi-
fied using the Child-Pugh (CP) scoring system.18 Per-protocol 
only patients with CP class A or B were eligible for the study 
regardless of disease etiology. Patients who developed hepa-
tocellular carcinoma (HCC) in the context of cirrhosis were 
not receiving any anticancer treatment at the time of sam-
pling. Control subjects had no known liver disease and were 
excluded if they were under medical investigation or had a 
history of non-skin malignancy in the last 2 years. No dietary 
restrictions were applied to any participant. Data about the 
participants are reported in Table 1.

Breath sampling
Acquisition of Breath Biopsy samples was performed by us-
ing the ReCIVA® Breath Sampler (Owlstone Medical) as pre-
viously reported.8,19 Detailed methods are available in the 
Supplementary File 1.

Analytical measurements
Breath samples were analyzed using Breath Biopsy OMNI 
global VOC analysis as previously described.8 Detailed meth-
ods are available in the Supplementary File 1.

Feature extraction
Raw data files, collected in profile mode, were centroided us-
ing the peak picking vendor algorithm of the ProteoWizard-
MSConvert application.20 The centroid data were imported 
into MZmine 2.53 to proceed with feature extraction work-
flow.21 ADAP chromatogram builder module was used to de-

Table 1.  Subject characteristics

Characteristic Control Cirrhosis p-values

Patients, n 42 46 (14 with HCC)

Age in years, median (range) 62 (34–81) 58.5 (35–79) 0.61

Male/female sex 21/21 29/17

Height median, cm (range) 170 (157–191) 173 (150–197) 0.67

Weight median, kg (range) 76 (51–149) 85 (48–165) 0.03

BMI median, kg/m2 (range) 25.5 (18.9–46.0) 29.7 (18.0–43.4) 0.01

Child-Pugh class A/B/C/na* – 30/12/1/3

MELD median (range) – 8 (7–19)

UKELD median (range) – 48.1 (44.7–60.5)

Total bilirubin median, µmol/L (range) – 17 (7–86)

Serum albumin median, g/L (range) – 35 (24–45)

INR median, % (range) – 1.07 (0.82–1.78)

ALT median, IU/L (range) – 27 (14–105)

ALP median, IU/L (range) – 100 (40–440)

Creatinine, µmol/L – 67 (38–147)

Sodium, mM – 139 (126–144)

*Some blood metrics were not available for three patients. HCC, hepatocellular carcinoma; BMI, body mass index; MELD, model of end-stage liver disease; UKELD, the 
United Kingdom model for end-stage liver disease; INR, international normalized ratio; ALT, alanine aminotransferase; ALP, alkaline phosphatase.
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tect the peak with the a minimum highest intensity of 1.0E5 
and m/z tolerance of 5 PPM.22 Detected features were decon-
voluted using the Wavelet ADAP algorithm with the param-
eters S/N of 3, S/N estimator wavelet coefficient. SN; coef-
ficient/area threshold of 100, peak duration range of 0–1.0 
m, and RT wavelet range of 0–0.15 m. Hierarchical clustering 
was used to combine peaks into analytes and construct frag-
mentation spectra for each analyte as described by Smirnov, 
et al.23 ADAP Aligner (GC) was used for retention time align-
ment, with a minimum confidence of 0.1, an RT tolerance of 
0.5 m, an m/z tolerance of 5 ppm, score threshold of 0.75, 
and a score weight of 0.1. Retention time similarity was calcu-
lated using the retention time difference (fast) method. Com-
pounds were tentatively identified using the National Insti-
tute of Standards and Technology (NIST) library and in-house 
high resolution accurate mass (HRAM) library (https://www.
owlstonemedical.com/about/blog/2022/may/30/biomarker-
analysis-breath-hram-library/). Database hits were filtered 
according to their structure relevance to standard compounds. 
Identity of compounds was validated by standards injection 
(R)-(+)-Limonene,9–12,14,24,25 (183164, (Sigma Aldrich, Gill-
ingham, UK), 2-pentanone,9,10,24,26 (471194; Sigma Aldrich), 
dimethyl selenide,9,26 (41572; Sigma Aldrich), Indole (I3408; 
Sigma Aldrich), and eucalyptol (29210; Sigma Aldrich).

Data handling and statistical analysis
Data were analyzed by the Python and R programming lan-
guages (Python Software Foundation, Python Language Refer-
ence, version 2.7. http://www.python.org and R Core Team, 
2021, R Foundation for Statistical Computing, Vienna, Austria. 
https://www.R-project.org). Data visualization was performed 
with matplotlib,27 seaborn,28 and ggplot2,29 libraries.

Intensity of VOCs (count/m), median, and range were 
compared between groups using the Mann-Whitney U-test 
for non-parametric data, and p-values <0.05 were consid-
ered statistically significant unless stated otherwise. A total 
of 11 VOCs with a Benjamin-Hochberg adjusted p<0.1 ad-
vanced to investigation for correlation with blood metrics of 
liver function. Data was pre-processed as described below 
and breath-sample assay results were averaged. Correction 
for instrument fluctuation was obtained by probabilistic quo-
tient normalization.30 Log transformation was performed to 
bring VOC intensity closer to a normal distribution.

To build a classification model, first dimensionality reduc-
tion was performed by considering as candidate biomark-
ers only features identified as statistically significant in the 
univariate analysis (p<0.05) between cirrhosis and controls. 
This selection reduced the feature space that any model 
needs to search, and thus the likelihood of unstable results, 
or overfitting.31 The top VOCs for classification were identified 
by stability selection and LASSO logistic regression.32 Model 
performance was validated by five-fold cross validation, with 
VOC selection performed within each fold training set. Only 
features above a certain stability score were selected in the 
model. The importance of each feature for classification was 
expressed as the resulting average stability score across the 
five-fold cross validation.

Stability selection chooses the features that behave con-
sistently through permutations of a dataset. In the context 
of a clinical test, it may be important to reduce the number 
of features/VOCs required for further measurement. To this 
end, an analysis was conducted to observe how few features 
with similar AUCs could be obtained compared with the sta-
ble model. Step-forward feature selection,33 with a simple 
five-fold cross validation was used to obtain the best per-
forming models with one or two features, or so on, minimiz-
ing the number of VOCs necessary for a potential breath test. 

Starting from a feature set size of one, classification perfor-
mance of combinations of candidate biomarkers expressed 
as AUCs was measured by adding one new VOC at a time to 
the model.

Within the cirrhosis group, the relationship between blood 
bilirubin, albumin and international normalized ratio (INR), 
and breath metrics was assessed by canonical correlation 
analysis (CCA).34 CCA finds the relationship between two 
multivariate sets of variables measured for the same set of 
samples and was considered as the extension of bivariate 
correlations. The identified new bases (new directions) for 
each data set were a linear combination of the original pa-
rameters. The new bases (i.e., canonical variates) represent-
ed maximized correlations of the original parameters in two 
datasets (i.e., VOCs and blood metrics). The resulting CCA 
score plot was generated using statistically significant ca-
nonical variates. In the score plot, each point corresponded 
to the combined information from breath and blood samples 
collected from the same patient. The shape of the project-
ed data point indicates the correlation between two blocks 
of data, which were VOCs in breath and blood metrics. The 
contribution of the original parameters to the correlation be-
tween the two blocks of variables was estimated by calculat-
ing the canonical loadings, which expressed the correlation 
between the original variable and the canonical variate. Vari-
ance of selected features in relation to severity of cirrhosis 
was assessed by principal component analysis (PCA).

Results

Subject characteristics
Breath samples were collected from 42 controls, mean 62 
(range 34–81) years of age, 21 men and 21 women, and 46 
patients with cirrhosis (14 complicated by HCC, mean 58.5 
(range 35–79) years of age, 29 men and 17 women. Subject 
characteristics are shown in Table 1, and in Ferrandino et al.8 
An unbalanced sex ratio was observed in the cirrhosis group, 
consistent with the known male preponderance of liver dis-
ease. However, no sex-linked differences in exhaled VOCs 
were identified (Supplementary Fig. 1) or have been previ-
ously described.8,25,35 Significant differences in body weight 
(p=0.03) and body mass index (BMI, p=0.01) were observed 
between the study groups.

Generation of the discovery dataset
Automated feature extraction performed on a total of 478 
ion chromatograms, 176 breath samples measured in du-
plicate, 123 calibration standards, 109 quality checks, and 
70 blanks, resulted in a data frame of 2,593 molecular fea-
tures (MFs). Of these, 768 had <50% missing values. Dis-
criminatory potential between study groups of environmen-
tal contaminants may originate from spurious correlations 
between variables generated by data normalization.36 To 
exclude those contaminants, we compared the intensity of 
each MF with those measured in blanks. A total of 196 MFs 
referred to as VOCs were significantly elevated in breath 
compared with blanks (p<0.1, Mann-Whitney U-test, and 
positive fold change in breath) and were used to generate 
the discovery dataset. An initial quality control based on 
these VOCs was constructed by PCA and separated breath 
samples from blanks over the first two principal compo-
nents, and explained 24.1% and 14.4 % of data variance, 
respectively (Supplementary Fig. 2)

Identification of VOCs associated with cirrhosis
An exploratory, cirrhosis-associated VOC profile generated 

https://www.owlstonemedical.com/about/blog/2022/may/30/biomarker-analysis-breath-hram-library/
https://www.owlstonemedical.com/about/blog/2022/may/30/biomarker-analysis-breath-hram-library/
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http://www.python.org
https://www.R-project.org
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by univariate analysis with uncorrected p-values of <0.05 
(Mann-Whitney U-test) and log fold-change ≥ 2, resulted 
in 15 upregulated and 2 downregulated VOCs in the breath 
of cirrhosis patients compared with controls (Fig. 1). As ex-
pected, limonene (m/z 91.05, RT ∼11 m), and 2-pentanone 
(m/z 71.04, RT ∼5 m) were upregulated, and dimethyl sele-
nide (m/z 109.96, RT ∼3 min), was downregulated in the 
breath of patients with cirrhosis (Fig. 1) as previously re-
ported.9–12,14,24–26

Estimation of classification performance
A total of 29 on-breath VOCs were differentially abundant 
(unadjusted p-value <0.05, Mann-Whitney U-test) between 
controls and cirrhosis groups (Fig. 2) and were first used to 
generate individual receiver operating characteristic (ROC) 
plots to estimate individual diagnostic performance predict-
ing the presence of cirrhosis. The top four compounds with 
AUC of 0.82, 0.80, 0.79, and 0.76 are shown in Figure 3. 
Subsequently, the performance of combinations of VOCs was 
explored. A stratified five-fold cross validation train/test split 
of 70%/30% was performed to build a classification model. 
In the training sets, the model returned an average AUC of 
0.99±0.00 (Fig. 4A), and in the test sets, an average AUC 
of 0.95±0.04 (Fig. 4B). The corresponding confusion matrix 

generated by cross-validated predictions (Fig. 4C) had three 
false positives (7%) that were misclassified because of el-
evated levels of limonene or 2-pentanone. Of the eight false 
negatives (17%), six were CP class A, two were CP class B, 
and three had HCC with CP class A.

To estimate a trade-off between the number of features to 
measure, and classification performance in a potential breath 
test, we used step-forward feature selection. Average AUC 
plateaus after the first seven features (Table 2) were add-
ed to the model (Fig. 4D). Identity of these top performing 
VOCs is reported in Table 2 and their detailed fragmentation 
pattern is reported in Supplementary Table 1. Additionally, 
potential effects of cirrhosis comorbidities, namely, obesity 
(BMI>30), type 2 diabetes, HCC, and portal hypertension 
on these seven top performing VOCs were explored. Sig-
nificantly increased limonene and 2-pentanone were found 
in patients with portal hypertension (n=7), and significantly 
increased indole with obesity (n=23, Supplementary Table 
2). No significant differences were found for the other co-
morbidities.

Identification of breath compounds correlated with 
hepatic function in subjects with cirrhosis
A correction for multiple testing using the Benjamini-Hoch-

Fig. 1.  Volcano plot of exhaled VOCs. The X-axis represents the log2 mean ratio fold-change of the relative abundance of each VOC between cirrhosis and controls. 
The Y-axis represents the p-value of each VOC. Compounds with fold-change >2 and p<0.05 are highlighted in blue. Limonene and 2-pentanone were elevated in the 
breath of patients with cirrhosis and dimethyl selenide was reduced, as expected. VOC, volatile organic compound.
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berg (BH) method returned a subset of 11 VOCs with an 
adjusted p<0.1. Correlations between these selected breath 
compounds and blood metrics of liver function within the cir-
rhosis group, namely bilirubin, albumin, and prothrombin 
time expressed as INR, were first investigated by generat-
ing a Pearson correlation matrix visualized in Figure 5A and 
Table 3. As expected, limonene (VOC3) had a positive cor-
relation with bilirubin and INR and a negative correlation with 
albumin, as previously reported.8 Other MFs with retention 
time of ∼11 m had a similar pattern. Consistently, dimethyl 
selenide (VOC4) and VOC10 that were downregulated in the 
breath of patients with cirrhosis (Fig. 2), had a positive corre-
lation with albumin. No correlations were observed between 
VOCs and markers of hepatic inflammation, such as alanine 
aminotransferase (ALT), or markers of advanced portal hy-
pertension, such as serum sodium, and creatinine (Supple-
mentary Fig. 3). Interestingly, none of the compounds identi-
fied as background contaminants were correlated with blood 
metrics (data not shown).

Collective correlations between breath and blood metrics 
of subjects with cirrhosis were further investigated by using 
the CCA.34 The resulting CCA score plot of the first canonical 
variates showed that the set of variables measured in blood 
significantly correlated with the set of variables measured in 
breath (R2=0.842, Fig. 5B). Inter-relation between individual 
exhaled VOCs and blood metrics of liver function was inves-
tigated by computing the canonical loadings. These param-
eters represent the correlation between each variable and its 
resulting canonical variate, reflecting the contribution of the 
variable to the overall correlation. Among the set of blood 
metrics, albumin had a correlation that was the reverse of 
bilirubin and INR, as expected. Albumin contributed the most 
to the overall correlation, while INR had the smallest con-
tribution (Fig. 6A). Among the set of breath metrics, eight 
upregulated VOCs, including limonene (VOC3) and 2-pen-
tanone (VOC1), showed positive loading, while dimethyl 

selenide (VOC4) and VOC10, which were found downregu-
lated (Fig. 2) had a negative loading, and VOC9 had a loading 
near zero (Fig. 6B).

Effect of cirrhosis severity on exhaled VOCs
Given that bilirubin, albumin, and INR are used to calculate 
the CP score, as a readout of hepatic function impairment 
associated with cirrhosis,18 we investigated the relation of 
the identified VOCs and this scoring system. The subset of 11 
VOCs reported in Table 2 were used to perform PCA and pro-
jected data points for each patient were colored by CP score 

Fig. 2.  Box plots of discriminatory VOCs between cirrhosis and controls. A total of 29 on-breath VOCs were found significantly different (p<0.05, Mann-Whitney 
U-test) between control and cirrhosis groups. VOCs, volatile organic compounds.

Fig. 3.  Receiver operating characteristic plots of the four top single 
VOCs comparing cirrhosis vs. controls. The top 4 ROC plots for on-breath 
VOCs were calculated to explore their discriminatory performance. 2-pen-
tanone, limonene, and dimethyl selenide were found among them. ROC, re-
ceiver operating characteristic; VOCs, volatile organic compounds.



Journal of Clinical and Translational Hepatology 20236

Ferrandino G. et al: Breath Biopsy for liver disease detection

(Fig. 7). PC1 explained 10.1%, and PC2 explained 4.4% of 
variance and distinguished patients with CP scores >5 from 
controls. Conversely, ∼50% of the patients with CP score of 
five overlapped with controls. Two patients with a CP score of 
>5 overlapped with controls (PC1<0 and PC2<1, Fig. 7). Of 
those, one had a score of seven points due to the presence 

of moderate ascites, and the other had an albumin of <35 
g/L (34 g/L).

Discussion
This pilot study demonstrated that a panel of exhaled VOCs 

Fig. 4.  Classification performance of combined VOCs. (A) ROC plot and confidence interval obtained for the training set. (B) ROC plot and confidence interval 
obtained for the test set. (C) Corresponding confusion matrix generated using the Youden index as threshold. (D) Improvements of classification performance by addi-
tion of VOCs to the model. ROC, receiver operating characteristic; VOCs, volatile organic compounds.

Table 2.  Best performing VOCs

VOC Compound ID RT m/z Average stability score Identification

VOC1 2-Pentanone 5.30598 71.04919 0.916 HRAM, Standard

VOC12 1-pentene, 4-methyl, or 1-hexene 7.62411 42.03163 0.890 NIST

VOC17 Indole 17.13762 116.90607 0.886 HRAM, Standard

VOC4 Dimethyl selenide 3.30723 109.963 0.762 HRAM, Standard

VOC3 Limonene 11.00585 91.05427 0.734 HRAM, Standard

VOC2 Eucalyptol 11.34312 139.11181 0.732 HRAM, Standard

VOC29 Benzene, (1-propylnonyl)- 20.9004 133.19707 0.6 NIST

HRAM, breath biopsy high resolution accurate mass library; VOC, volatile organic compound; RT, retention time.
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discriminated cirrhosis patients from controls with no known 
liver diseases. The AUC of the test set was 0.95, which was 
better than the AUC of 0.78 measured when using limonene 
alone.8 The spectrum of alterations of the exhaled VOCs re-
flects disease-associated hepatic impairment as demonstrat-
ed by correlations with blood biomarkers of clearance and 
the protein synthesis capacity of the liver. Our data point 
toward the use of these VOCs as potential biomarkers for 
functional, non-invasive detection of chronic liver disease. 
Several studies have identified breath VOCs associated with 
different stages of liver disease.4,37,38 However, only few of 
them attempted to explore correlations of VOCs with blood 
biomarkers of liver function.8,11,14 In this study, comprehen-
sive analysis projected the entire set of discriminant exhaled 
VOCs into the set of blood metrics of liver function, measured 

in subjects with cirrhosis, demonstrating a significant collec-
tive correlation between the two sets of variables and quan-
tifying the contribution of each single variable to the overall 
correlation. Additionally, lower-dimensional data, obtained 
by projection of discriminatory features onto the first two 
components, revealed a separation of subjects with more 
advanced cirrhosis estimated by CP score. This innovation in 
the data analysis workflow contributed one additional layer 
of confidence to the validity of the identified discriminatory 
features and demonstrated that alterations of VOCs in breath 
depend on the extent of disease-associated liver dysfunction. 
The results expand our previous finding that limonene was 
correlated with albumin, bilirubin, and INR.8

Taken together, the correlation data provide a novel mech-
anistic understanding. Alteration of serum bilirubin, albumin, 

Fig. 5.  Correlation of breath VOCs with blood metrics of liver function in cirrhosis subjects. (A) Correlation plot of identified VOCs and serum bilirubin, albu-
min, and INR. Blue indicates a negative and red a positive correlation. Circle size and color intensity show the magnitude of the correlation. (B) CCA score plot using 
the first canonical variates of selected sets of VOCs and blood metrics of liver function. Each projected data point represents the combined information of breath VOCs 
and blood metrics of one cirrhotic patient. The CCA analysis revealed significant correlations, with R2=0.842. CCA, canonical correlation analysis; INR, international 
normalized ratio; VOCs, volatile organic compounds.

Table 3.  Area under the curve (AUC) and correlation of VOCs with blood metrics

VOC Identity AUC
Correlation (coefficient r, p-value)

Bilirubin Albumin PT-INR

VOC1 2-pentanone 0.82 0.548, 0.01 −0.346, 0.014 0.347, 0.013

VOC2 Eucalyptol 0.80 0.258, 0.07 −0.348, 0.013 0.264, 0.064

VOC3 Limonene 0.79 0.516, 0.01 −0.487, 0.01 0.178, 0.216

VOC4 Dimethyl selenide 0.76 −0.012, 0.936 0.492, 0.01 −0.135, 0.352

VOC5 Terpene 0.72 0.415, 0.003 −0.552, 0.01 0.309, 0.029

VOC6 2-Pentanone (m/z 43.02369) 0.72 0.308, 0.03 −0.196, 0.173 −0.022, 0.881

VOC7 Terpene 0.71 0.344, 0.014 −0.236, 0.098 −0.112, 0.441

VOC8 Terpene 0.70 0.368, 0.009 −0.388, 0.005 0.338, 0.016

VOC9 Unknown 0.69 0.136, 0.346 0.067, 0.642 0.0, 1.0

VOC10 Unknown 0.68 0.028, 0.845 0.267, 0.061 −0.014, 0.921

VOC11 Terpene 0.67 0.177, 0.22 −0.412, 0.003 −0.077, 0.594

VOC, volatile organic compound; AUC, area under the curve; PT-INR, prothrombin time-international normalized ratio.
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Fig. 6.  Canonical loadings of set of variables. Canonical loadings represent the correlation between a variable and its canonical variate and express the contribu-
tion of each variable to the overall correlation. (A) Loadings for blood variables, albumin has opposite correlation than bilirubin and INR, as expected. (B) Loadings for 
breath VOCs, limonene and 2-pentanone had a positive contribution. Dimethyl selenide (VOC4), which was downregulated in the breath of patients with cirrhosis, had 
a negative correlation. INR, international normalized ratio; VOCs, volatile organic compounds.

Fig. 7.  VOC alterations in relation to cirrhosis severity. Projected data points of the first two components of a PCA calculated using breath variables with a BH 
adjusted p<0.1. PC1 explains 10.1% and PC2 4.4% of variance and shows that separation of cirrhotic patients based on their CP score. About 50% of the patients with 
a CP=5 cluster with controls. BH, Benjamin-Hochberg; CP, Child-Pugh; PCA, principal component analysis; VOC, volatile organic compound.
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and INR are considered a consequence of reduced clearance 
and protein synthesis by the liver. Therefore, we speculate 
that alterations of the identified VOCs are consequence of 
impaired liver function and can be used to monitor the pro-
gression of chronic liver disease. VOC9 was significantly el-
evated in the breath of patients with cirrhosis and had a poor 
correlation with blood metrics, indicating that it may be cor-
related with other alterations associated with chronic liver 
disease such as inflammation and/or fibrosis. In validation 
studies, potential correlations of these VOCs with liver biopsy 
histopathology would pave the way to replacing invasive pro-
cedures by breath collection for prognosis following thera-
peutic interventions.

The results reported here are consistent with existing liter-
ature. For example, Dadamio et al. 2011,9 Fernandez Del Rio 
et al. 2015,10 and Pijls et al. 2016,12 also found a spectrum of 
cirrhosis-associated compounds in breath. As in those stud-
ies, we observed elevated signals of limonene,9–12,14,24,25 
2-pentanone,9,10,24,26 and an alkene (1-pentene, 4-methyl or 
1-hexene),9 and reduced signals of dimethyl selenide9,26 in 
the breath of patients with cirrhosis. In contrast, we found 
an elevated indole signal, which Dadamio et al. 2011 found 
to be reduced in the breath of patients with cirrhosis.9 In 
that study, eucalyptol was detected but with no significant 
differences in the study groups. We found it was elevated in 
the breath of subjects with cirrhosis. The discrepancies may 
be explained by different dietary habits that determine the 
ingestion of foods from which the VOCs originated.

A study strength is the procedures used for breath col-
lection, which are a substantial advance over prior studies. 
Firstly, we ensured the inhaled air was purified to minimize 
environmental contribution to the signal. Secondly, the vol-
ume of sampled breath or blanks was standardized and 
closely monitored. Finally, multiple blanks were collected 
during each session, allowing experimental discrimination of 
contaminants from exhaled VOCs. Taken together they pro-
vided a high degree of confidence in our ability to discern on-
breath VOCs from environmental contaminants and use only 
the former for classification. The detailed clinical characteri-
zation of cases adds to the strength of the study, allowing us 
to evaluate the impact of disease severity on exhaled VOCs 
and classification performance.

A study limitation is the reduced characterization of sub-
jects allocated to the control group, with no laboratory blood 
data available. The subjects may have been affected by a 
liver disease at a preclinical stage and misclassified as false 
positives, influencing the classification performance. How-
ever, establishing the accuracy of a breath test for cirrhosis 
requires a large population and goes beyond the exploratory 
nature of this study. Another limitation is the unstandardized 
dietary intake and exposure to exogenous compounds before 
testing. On one hand, this represents clinical reality; on the 
other hand, it could have impacted the discriminatory per-
formance of these compounds. Limonene is a monoterpene 
isolated from a variety of plant sources.39 2-pentanone has 
been found in cheddar cheese40 and ripe bananas.41 Sele-
nium, in its different forms, is a micronutrient essential for 
cellular function and is abundant in plant-based foods.42 Al-
though these compounds accumulate in the body when liver 
function is impaired,10 subjects at earlier stage cirrhosis, and 
with random exposure lower than hepatic clearance, may 
be misclassified as false negative and affect test sensitivity. 
On the other hand, control subjects exposed to these com-
pounds shortly before testing may result as false positive and 
impair test specificity. Consistent with this hypothesis, the 
three false positives allocated by our model in the test set 
were above the 75th percentile for limonene or 2-pentanone, 

indicating that they probably ingested these compounds 
shortly before breath collection. These observations suggest 
that standardizing compound exposure would be vital to in-
creasing the performance of a breath test so that it can be 
extended to earlier stage liver diseases such as nonalcoholic 
steatohepatitis (NASH).5

Classification with combined VOCs outperformed that 
measured with single compounds, indicating that multi-
ple compounds better represent the complexity of hepatic 
metabolic pathways. Terpenes, and terpenoids such as li-
monene and eucalyptol, are mainly metabolized by the CYP 
system,15,43 which is well established to be downregulated 
in chronic hepatic conditions including NASH.44–46 2-pen-
tanone and other ketones may be converted to 2-pentanol,47 
by αα-alcohol dehydrogenase (αα-ADH),48 and to a lesser 
extent to 3-Hydroxy-2-pentanone and 2,3-pentanediol.47 
Consistent with those observations, liver samples obtained 
from patients with NASH had reduced ADH and aldehyde 
dehydrogenase (ALDH) activity.49 Elevated breath levels of 
alkenes may derive from lipid peroxidation of unsaturated 
fatty acids as a consequence of persistent inflammation 
and oxidative stress affecting the cirrhotic liver.37 Indole is 
generated by the catabolism of tryptophan mediated by gut 
bacteria.37 Impaired hepatic clearance may explain elevated 
levels of indole in cirrhosis. Alkylbenzenes with a long alkyl 
group may be oxidized to the corresponding carboxylic ac-
ids and undergo β-oxidation to form benzoic acid, which is 
then converted to hippuric acid. This metabolic pathway was 
found downregulated in subjects with cirrhosis.50 Dimethyl 
selenide is an excretion product of selenium metabolism.42 
Impaired organic and inorganic selenium biotransformation 
explains downregulation of dimethyl selenide in the breath 
of cirrhotic patients. Consistent with this hypothesis, plasma 
selenium concentration was reduced in patients with cirrho-
sis to an extent related to disease severity.51 Cirrhosis co-
morbidities may also influence the amount of exhaled VOCs. 
Increased levels of limonene and 2-pentanone in subjects 
with cirrhosis and portal hypertension compared to those 
without portal hypertension, suggest that altered blood flow 
to the liver contributes to reduce the hepatic ability to clear 
these compounds. Similarly, obese patients with increased 
levels of indole, may have alterations of gut bacteria lead-
ing to increased production of this compound. That, coupled 
with reduced hepatic clearance leads to greater elevation of 
levels in the breath. Although, information on comorbidities 
was collected, the study design was not optimal to address 
those questions.

Collectively, the evidence indicates that breath analysis 
looking at specific VOCs has potential to assess functional 
alterations of specific metabolic pathways associated with 
chronic liver diseases. Although there is no clinical need for 
an additional diagnostic test for cirrhosis, current diagnos-
tic modalities have limitations as screening tools. Consist-
ently, more than 50% of the subjects receive a diagnosis 
after suffering decompensating events.1,2,52 A breath-based 
test could be used as a screening tool either in primary care, 
or for at home self-testing, such that lifestyle changes and 
therapeutic interventions could be implemented before the 
first episode of decompensation.

In summary, this study identified a set of exhaled VOCs 
with alterations that seem to be driven primarily by func-
tional impairment of the liver. The results underpin earlier 
observations that downregulation of different hepatic meta-
bolic pathways occurring in cirrhosis and early stages of liver 
disease may be the underlying mechanism. Interestingly, 
most of the VOCs were of exogenous origin. Further inves-
tigation will establish if adjustment of the exposure to these 
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VOCs allows detection of more subtle metabolic alterations 
that occur in earlier stages of liver diseases such as NASH.
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