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Abstract: The measurement of exhaled volatile organic compounds (VOCs) in exhaled breath (breath-
omics) represents an exciting biomarker matrix for airways disease, with early research indicating
a sensitivity to airway inflammation. One of the key aspects to analytical validity for any clinical
biomarker is an understanding of the short-term repeatability of measures. We collected exhaled
breath samples on 5 consecutive days in 14 subjects with severe asthma who had undergone exten-
sive clinical characterisation. Principal component analysis on VOC abundance across all breath
samples revealed no variance due to the day of sampling. Samples from the same patients clustered
together and there was some separation according to T2 inflammatory markers. The intra-subject and
between-subject variability of each VOC was calculated across the 70 samples and identified 30.35%
of VOCs to be erratic: variable between subjects but also variable in the same subject. Exclusion
of these erratic VOCs from machine learning approaches revealed no apparent loss of structure to
the underlying data or loss of relationship with salient clinical characteristics. Moreover, cluster
evaluation by the silhouette coefficient indicates more distinct clustering. We are able to describe
the short-term repeatability of breath samples in a severe asthma population and corroborate its
sensitivity to airway inflammation. We also describe a novel variance-based feature selection tool
that, when applied to larger clinical studies, could improve machine learning model predictions.

Keywords: breathomics; VOC; volatile organic compounds; repeatability; asthma; severe asthma;
respiratory

1. Introduction

Asthma is characterised by chronic airway inflammation, variable airway obstruction/hyper-
responsiveness, clinical symptoms (such as breathlessness and cough) and acute, po-
tentially life-threatening exacerbation events [1,2]. Though most patients with asthma
achieve good control with standard therapies, 5–10% of patients remain poorly controlled
despite high-dose inhaled corticosteroid (ICS) and/or oral corticosteroids (OCS) [3]. It is
increasingly recognised that these patients with severe asthma are highly heterogenous [4,5]
and that there are distinct molecular mechanisms driving their poor asthma control [6–9]
and varied response to currently available treatments [10–12].

The accurate identification of these driving mechanisms is critical in the ambition of
precision medicine [13–15], and exhaled breath is potentially the ideal biomarker matrix
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for airways disease due to its direct contact with the organ of interest and ease of access.
Exhaled breath can be sampled easily, non-invasively and almost inexhaustibly [16]. This
is important because those biomarkers that can be easily sampled at the point of care have
the highest translational potential [17], as illustrated by the clinical adoption of FeNO
(fractional concentration of exhaled nitric oxide) for airway inflammation [18].

The primary components of exhaled breath are water vapour and inert gases, but the
characteristic odours in breath are due to the thousands of volatile organic compounds
present in tiny concentrations (parts per million to trillion) [19]. The measurement and
high-throughput analysis of these volatile organic compounds, breathomics, has indicated
that exhaled VOCs may be sensitive to airway inflammation [20,21].

Better understanding of exhaled VOCs is required before breathomics can be trans-
lated to the clinical setting [22]. Though within-day repeatability has been demonstrated in
patients with asthma [23,24], VOCs are known to be sensitive to a number of non-disease-
related factors liable to change day to day: exercise, diet and environmental exposures [20].
In this study, we sought to explore the short-term repeatability of VOCs in severe asthma pa-
tients during a clinically stable state. Understanding this quality is critical if exhaled VOCs
are to be used as clinical biomarkers that can guide personalised medicine approaches.

2. Materials and Methods
2.1. Population

The WATCH (Wessex AsThma CoHort of difficult asthma) study [25] is an ongoing
prospective clinical cohort of patients with difficult-to-treat asthma based at University
Hospitals Southampton NHS Foundation Trust (UHSFT), Southampton, United Kingdom
(UK). In this study, patients with severe asthma were invited for deeper clinical charac-
terisation, which included the collection of blood, breath, and induced sputum samples.
Participants were included in this analysis if they agreed to participate in the study sched-
ule described below and were able to produce a viable sputum sample. Severe asthma was
confirmed by an asthma specialist in accordance with the BTS (British Thoracic Society)
guidelines with alternative causes for symptoms excluded and treatment for co-morbidities
optimised. Participants were aged between 18 and 80 years, not current smokers but with
no restrictions according to sex or race.

2.2. Study Design

The full characterisation schedule was performed on the same morning ending with
sputum induction. In some cases, to obtain a viable sputum sample, it was necessary to
repeat sputum induction on a second date. Subjects were excluded from the analysis if a
viable sputum sample was not obtainable. Once a sputum sample was obtained, subjects
were invited to provide breath samples on five consecutive days, starting within 7 days of
sputum induction; these breath samples were collected at the same time of day.

2.3. Sputum Collection

Sputum was induced using a DeVilbiss® Ultraneb (DeVilbiss, New York, NY, USA)
following a standardised protocol based on the methods described by ten Brinke et al. [26].
Subjects were bronchodilated with short-acting beta-agonist (SABA) medication prior to
sputum induction, and lung function (FEV1) was measured. Subjects underwent a maxi-
mum of 3 rounds of 5-min saline nebulisations, with increasing saline tonicity, beginning
with isotonic (0.9%) saline, followed by 3% and finally 4.5% saline. To check tolerability of
the procedure, lung function (FEV1) was measured after each 5-min nebulisation and after
2-min of nebulisation if the subject’s FEV1 < 1.5 L. If a 20% drop from post bronchodilator
FEV1 had been reached, the induction would be stopped. Samples were stored on ice
during collection and transport to the laboratory for processing.
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2.4. Sputum Processing

The concurrent method of sputum processing was performed involving a phosphate
buffered saline (PBS) incubation step followed by DTE incubation providing cytokines
and a differential cell count, respectively [27]. Sputum samples were processed as soon as
possible and within 2 h of expectoration with 8× volume of PBS, a proportion of supernatant
was then removed, and the sample was further incubated with 0.2% dithioerythritol
(DTE), giving a final concentration of 0.1% DTE before cytospins for cell counts were
obtained. Cytospins were stained using by rapid Romanowski staining (Fisher Scientific,
Loughborough, UK). The proportion of inflammatory cells were assessed by counting
800 respiratory cells plus squamous to give a mean percentage of respiratory cells.

2.5. Breath Sampling

All breath samples were collected within the same room. Breath samples were col-
lected using the ReCIVA Breath Sampler (Owlstone Medical Ltd, Cambridge, UK). Ex-
haled breath was collected onto a Breath Biopsy Cartridge, which consists of four Tenax
TA/Carbograph 5TD sorbent tubes (Markes International, Llantrisant, UK). The ReCIVA
Breath Sampler monitored subjects’ tidal breathing pattern in real time, using CO2 concen-
tration and pressure sensors. Dynamically determined gates using the real-time pressure
levels triggered the sampling pumps to collect breath. Each pump pulls pressure-gated
exhaled breath through two sorbent tubes, with 1473 mL being collected on each tube.
Each pair of tubes was later combined to give a single sample for thermal desorption-gas
chromatography-mass spectrometry (TD-GC-MS) analysis.

2.6. Breath Analysis

Samples were dry purged to remove excess water and desorbed using a TD100-xr
thermal desorption autosampler (Markes International) and transferred onto a Quadrex
007-624 column (30 m × 0.32 mm × 3.00 µm) using splitless injection. Chromatographic
separation was achieved via a programmed method (40–250 ◦C in 84.5 min at 3.0 mL/min)
on a 7890B gas chromatography (GC) oven (Agilent Technologies, Santa Clara, CA, USA)
and mass spectral data acquired using an electron impact ionization time-of-flight (TOF)
BenchTOF high-definition mass spectrometer (MS) (Markes International). Each sample
consisted of two sorbent tubes, both of which were desorbed into the Thermal Desorber
cold trap for a single analysis. A cleaning method was run between each sample to prevent
carry-over.

A quality control (QC) sample (sorbent tube spiked with a known mixture of chemicals)
was run between every four subject breath samples to monitor the stability of instrumenta-
tion. A blank tube was run every four samples and after every quality control sample to
monitor background. A set of four samples, quality control samples, and blank tubes are
denoted as an “analytical sequence”.

2.7. Breath Data Pre-Processing

Retention time shifts due to column events were corrected using retention time of com-
pounds in QC samples. For each QC sample, a piece-wise linear function was constructed
by comparing QC compound retention times in the sample to the compound-specific medi-
ans across all QC samples. This piece-wise linear function was then applied to the retention
time axis of breath samples that were analysed immediately after the QC sample. Small
deviations in peak area, introduced by retention time alignment, was corrected using the
scaling factors derived from the piece-wise linear functions.

Untargeted feature extraction was performed for samples that passed all curation
checks. TD-GC-MS chromatograms were converted into molecular feature (MF) lists for
statistical analysis. Whenever a feature was missing due to limit of detection (LOD), the
baseline for that feature was integrated instead to give a minimum value. If a feature could
not be reliably quantified due to issues not associated with LOD (e.g., interference from
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neighbouring peaks), no baseline integration was performed, and the feature was marked
as non-LOD missing.

Any feature with a high frequency (>20% of all samples considered in feature ex-
traction) of non-LOD missing values was excluded from further analysis. Each feature
was assigned a tentative ID by comparison to the National Institute of Standards and
Technology (NIST) mass spectra standard reference database (2017). A tentative ID was
assigned if the match score was >85%.

2.8. Statistical Analysis

Statistical analysis was performed using Python scripting language (version 3.8.3) [28].
Clinical characteristics were described using median and 95% confidence intervals with
between-group comparisons by Mann–Whitney U tests for continuous variables and absolute
numbers with percentages within each group by Chi Squared tests for categorical variables.

The abundance of molecular features (used hereafter interchangeably with VOCs)
was batch corrected (ComBAT [29]), log transformed and scaled (minmaxscaler). Data
were explored using principal component analysis (PCA) and visualised using the first
two principal components with ellipses constructed and positioned using the mean and
coefficient of variation of the principal components within the grouping of interest as a
representation of a 95% confidence interval. Correlations between principal components
and clinical characteristics was done by Pearson’s correlation coefficient for continuous
variables and by point biserial correlation for categorical variables. Sputum granulocyte
percentages were log transformed prior to correlation.

The variation for each VOC was calculated using the median absolute deviation:
median ratio (CVMAD), a coefficient of variation that performs well when applied to data
of skewed distributions [30]. The “Within Subject” variation for a VOC was defined by
calculating the CVMAD across five samples in the same subject and averaged across all the
subjects. The “Between Subject” variation for a VOC was defined by averaging the measure
across five samples in the same subject and calculating the CVMAD across all subjects.
Any VOC with a mean between-subject variability of ≥30% was considered potentially
discriminatory. Any VOC with a mean within-subject variability of ≥30% was considered
inconsistent. These criteria were used to categorise VOCs into four: “Conserved”: low
variability within subjects and between subjects, “Erratic”: high variability within subjects
and between subjects, “Potential biomarkers”: low variability within subjects but high vari-
ability between subjects, and “Noisy”: high variability within subjects but low variability
between subjects.

Unsupervised clustering was performed using a K Means algorithm and Ward Hier-
archical algorithm on Euclidean distances. Both algorithms were instructed to identify n
clusters, where n represents the number of subjects from which the breath samples were
collected. Concordance between cluster prediction and subject identifier was assessed
using the Adjusted Rand Index and Fowles Mallows Score.

3. Results

The subjects participating in this study had poorly controlled asthma (ACQ6 of 2.5)
with evidence of persistent T2 airways inflammation (median FeNO of 38.5 ppb and median
Sputum Eosinophils of 2.6%) despite high doses of ICS therapy. In contrast to established
asthma cohorts, these subjects were predominantly male (35% female) and lean (median
BMI 25.0). Other than sputum neutrophils, there was no statistically significant difference
between males and females (Table 1).
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Table 1. Cohort characteristics by sex. Body mass index (BMI), gastro oesophageal reflux disorder
(GORD), inhaled corticosteroids (ICS), oral corticosteroids (beclomethasone dipropionate equivalent)
(OCS) immunoglobulin E (IgE), interleukin—(IL-5), fraction of exhaled nitric oxide (FeNO), parts per
billion (ppb), forced expiratory volume in 1 s (FEV1), ratio between forced expiratory volume in 1 s
and forced vital capacity (FEV1/FVC), measure relative to predicted value (% pred), asthma control
questionnaire (ACQ6), hospital anxiety and depression scale questionnaire (HADS), Sino-nasal
outcome test (SNOT22). Values displayed as number (%) or median [Q1, Q3].

Missing Overall Male Female p Value

14 9 5
Sex (% Female) 0 5 (35.7) 0 5 (100.0) <0.001

Age (years) 0 54.0 [51.2, 60.2] 58.0 [52.0, 67.0] 51.0 [39.0, 54.0] 0.094
Age of Onset (years) 4 14.0 [5.2, 30.2] 14.0 [4.8, 24.8] 21.5 [9.8, 31.2] 0.669

Atopic 0 8 (57.1) 7 (77.8) 1 (20.0) 0.091
Smoker (% never) 0 11 (78.6) 7 (77.8) 4 (80.0) 1

BMI (kg/m2) 0 25.0 [23.3, 31.5] 25.1 [24.1, 32.4] 23.9 [23.1, 27.0] 0.386
Nasal Polyps 1 6 (46.2) 4 (50.0) 2 (40.0) 1

GORD 0 11 (78.6) 7 (77.8) 4 (80.0) 1
ICS therapy dose 0 2920.0 [2529.0, 3900.0] 2920.0 [2460.0, 3000.0] 3840.0 [2920.0, 3920.0] 0.459

Maintenance therapy OCS 0 5 (35.7) 4 (44.4) 1 (20.0) 0.58
Anti IgE therapy 0 0 0 0 1
Anti IL-5 therapy 0 3 (21.4) 2 (22.2) 1 (20.0) 1

Asthma Exacerbations
requiring OCS

(last 12 months)
1 1.0 [0.0, 3.0] 0.5 [0.0, 1.0] 3.0 [1.0, 4.0] 0.194

FeNO50 (ppb) 0 38.5 [29.8, 50.8] 40.0 [29.0, 50.0] 32.0 [32.0, 65.0] 0.841
Post BD FEV1 % pred 0 81.5 [45.6, 92.9] 85.4 [44.0, 92.7] 77.6 [50.5, 99.7] 0.641

Post BD FEV1/FVC % pred 0 66.0 [54.5, 74.5] 66.0 [62.0, 70.0] 64.0 [52.0, 81.0] 0.841
ACQ6 0 2.5 [1.6, 3.5] 2.7 [1.3, 3.7] 2.3 [2.3, 2.8] 0.841

HADS Score 1 11.0 [6.0, 14.0] 11.0 [6.0, 20.5] 11.0 [6.0, 12.0] 0.462
Blood Eosinophils 0 0.2 [0.1, 0.4] 0.2 [0.1, 0.4] 0.3 [0.2, 0.3] 1
Blood Neutrophils 0 4.7 [4.2, 6.2] 5.5 [4.6, 7.3] 4.2 [3.7, 4.3] 0.062

Serum Total IgE 0 221.8 [52.9, 386.4] 234.0 [104.9, 367.4] 209.6 [35.5, 392.7] 0.841
Sputum Eosinophils (%) 0 2.6 [0.3, 22.5] 1.8 [0.5, 5.8] 40.9 [0.2, 47.0] 0.385
Sputum Neutrophils (%) 0 39.8 [17.8, 68.0] 65.0 [54.6, 77.5] 17.4 [11.1, 24.0] 0.028

3.1. Exploratory Analysis by PCA

In total, 32.75% of the variance in VOCs across the 70 breath samples (5 from each
of the 14 subjects) was captured in two principal components (Figure 1A). A PCA plot
using the first two principal components illustrated no separation of samples according
to the day on which breath samples were collected (Figure 1D). Breath samples from the
same subject broadly cluster closely to one another (Figure 1C) but do show some within-
subject variability, as illustrated by the ellipses. The size of each ellipsis (representing an
individual subject) relative to the spread of all breath samples illustrates that within-subject
variability is a fraction of the variability seen across all breath samples. The ellipses are
closely connected and in most cases overlap, indicating that breath samples from different
individuals share some characteristics.

Correlation between clinical characteristics and VOC-derived principal components
indicates that the majority of variance (first three PCs) in repeated VOC measures are most
sensitive to the Subject’s identity (Figure 1B). Thereafter, the variance appears sensitive to
characteristics associated with T2 inflammation: atopy, FeNO and sputum eosinophilia.
None of the variance captured in the first 10 principal components (accounting for 76.9% of
all variance in the VOCs) relates to the day of the visit.
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Figure 1. (A) Bar chart of the explained variance captured by each of the first ten principal components.
(B) Heatmap of correlation between clinical characteristics and the first 10 principal components
(Supplementary Materials Table S1), non-significant correlations in grey/white, positive and negative
correlations with p-value < 0.05 in red and blue, respectively. * Sputum Eosinophils and Sputum
Neutrophil Percentages log transformed. (C) PCA plot of all 70 breath samples with ellipses repre-
senting subject identifiers (n = 14). (D) PCA plot of all 70 breath samples (5 samples from 14 subjects)
with ellipses representing the day of the week (Monday, Tuesday, Wednesday, Thursday, Friday) on
which the sample was collected. Volatile organic compounds (VOCs), principal component (PC),
maintenance oral corticosteroid treatment dose (mOCS), post bronchodilator ratio between forced
expiratory volume in 1 s and forced vital capacity (Post BD FEV1/FVC), eosinophils (Eos), neutrophils
(Neut), Fraction of exhaled Nitric Oxide (FeNO).

3.2. Within-Subject Variability of Individual VOCs

The majority of VOCs (62, 69.66%) had a mean within-subject variation of <30%
(Figure 2A). In total, 15.73% of VOCs (n = 14) were found to be “Conserved”, that is, they
showed low variability within subjects and between subjects. None of the VOCs were
categorised as “Noisy” but 30.35% of VOCs (n = 27) were found to be “Erratic”, that is, they
showed high variability within subjects and between subjects. The remaining 53.93% of
VOCs (n = 48) showed low variability within subjects but high variability between subjects,
which we labelled “Potential Biomarkers” (based on these variability criteria alone).
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Figure 2. (A) Scatterplot of within-subject variability and between-subject variability for each VOC.
(B) Barplot indicating the frequency of VOC type observed in the NIST (National Institute of Stan-
dards and Technology) -identified VOCs used in this analysis, coloured by the relative frequency
of repeatability categories derived from within- and between-subject measures. Volatile organic
compounds (VOCs), National Institute of Standards and Technology (NIST).

The most frequent VOCs identified in breath samples in this cohort were classified
as alkanes or terpenoids (Figure 2B). A total of 52.4% of alkanes met our variance-based
criteria for a potential biomarker; however, 38.1% also met our criteria for erratic markers.
The majority of aldehydes (57.1%) were erratic.

3.3. Impact of Removing Erratic Volatile Organic Compounds

Unsupervised clustering by hierarchical and k means clustering, instructed to predict
14 (number of subjects) clusters from the repeat breath samples (n = 70), showed good
concordance between their predictions and actual subject identifiers, as measured by the
Adjusted Rand Index (Figure 3A). There were no differences in scores between models
trained on all features and models trained only on non-erratic features (Figure 3A). The
silhouette score uses the mean intra-cluster distance and mean nearest-cluster distance to
represent how distinct each cluster is. Using this metric, restricting to non-erratic features
produced more distinct clusters for both clustering algorithms (Figure 3B). A PCA was
repeated on non-erratic VOCs from all samples and correlated against clinical characteristics
(Figure 3C), replicating Figure 1B but excluding erratic VOCs. A similar pattern to that
observed when using all VOCs (Figure 1B) indicates that the underlying structure of VOCs
has not been compromised by removing these erratic features: in particular, statistically
significant correlations are observed between the first two principal components and FeNO,
sputum eosinophils (%) and sputum neutrophils (%).
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Figure 3. (A) Barplot of adjusted rand index for assessing agreement in unsupervised machine
learning algorithm prediction of 14 clusters and 14 subject identifiers. (B) Fowles Mallows Score
for assessing agreement in unsupervised machine learning algorithm prediction of 14 clusters and
14 subject identifiers. (C) Heatmap of correlation between continuous clinical characteristics and
the first 10 principal components, non-significant correlations in grey/white, positive and negative
correlations with p-value < 0.05 in red and blue, respectively. * Sputum Eosinophils and Sputum
Neutrophil Percentages log transformed. Volatile organic compounds (VOCs), principal component
(PC), maintenance oral corticosteroid treatment dose (mOCS), post bronchodilator ratio between
forced expiratory volume in 1 s and forced vital capacity (Post BD FEV1/FVC), eosinophils (Eos),
neutrophils (Neut), fraction of exhaled nitric oxide (FeNO).

4. Discussion

Inflammatory phenotyping has become essential in the clinical assessment of asthma [3],
identifying patients that will respond to corticosteroid and IL-5 targeting therapies [31].
Whilst high-throughput molecular analyses of sputum samples demonstrates that there
is heterogeneity beyond phenotyping by inflammatory cell counts alone [7,32], sampling
this matrix is unsuitable for routine clinical practice or large epidemiological studies due to
the practical limitations of undertaking sputum induction [33]. Validation of the reliable
identification of these molecular mechanisms through non-invasive technologies, such as
breathomics, is critical in advancing precision medicine in severe asthma.

To our knowledge, this is the first report of the short-term repeatability of exhaled
VOCs in a severe asthma cohort. During a clinically stable state, the abundance of most
VOCs included in this analysis were consistent day to day. This form of analytical validity is
essential if breathomics are to become established as clinical biomarkers and used in clinical
decision making. Alkanes and terpenoids are commonly identified as discriminatory in
exhaled breath [34] and, in this study, were broadly identified as having low variance
within subjects and high variance between subjects, giving confidence to their application
as a clinical biomarker.

The primary source of variation on PCA in the present analysis is subject identity.
Beyond this, some caution should be used in interpreting correlation with clinical char-
acteristics, as the PCA was performed in repeated measures. Nevertheless, the results
indicate that PC1 is also sensitive to T2 biology. This is consistent with other breathomics
studies [21], including those employing PCA in which the first PC usually discriminates
airways disease from health but thereafter variance relates to airway inflammation [35].
PC1 on this data also correlated with sex, which is well recognised to influence exhaled
VOCs [36]. Though our study was limited by numbers, none of the other clinical charac-
teristics associated with PC1 were statistically significantly different between males and
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females to indicate that sex underlies the sensitivity to T2 biology. Similarly, correlations to
subsequent PCs were not shared with sex.

The sampling parameters in this analysis may not match those of other studies and so,
strictly, the variance-based categorisation of VOCs described here may not apply to the same
VOCs measured in other studies. This ultimately reinforces the need for methodological
standardisation [37,38]. Nevertheless, the application of within-subject variance as a feature
selection tool is, to our knowledge, unique. Dimension reduction techniques are commonly
applied to breathomics [39] and have a number of advantages. In particular, when the
number of observations is limited, dimension reduction has the advantage of reducing
model overfitting and in so doing, increasing overall performance of machine learning
classifiers [40].

It is plausible that in some instances, within subject variance may reflect salient changes
in airway biology; penalising this variation may therefore ignore or limit the potential
of breathomics. However, this consideration should be restricted to established VOC
biomarkers. The pressing need for breathomics is validation, but conducting large-scale
studies with enough observations to overcome the risk of false discovery is logistically [41]
and financially costly and thus prohibitive. One way to augment this process may be to
conduct a repeatability study, as described here, in parallel to a larger cross-sectional study:
VOCs that are erratic are most likely to introduce noise to data and contribute to false
positives. As the field grows, it is likely that this approach is superseded.

The impact of this feature selection tool was assessed on unsupervised clustering tools
predicting subject identifier, as our data consisted of repeat samples and was underpowered
for the prediction of clinical characteristics. Subject identity was a major contribution to
variance in this data and so it is not surprising that there is a ceiling effect for classification
using all or restricted features, as measured by the adjusted Rand index. Improvement in
the silhouette score does indicate though that the clusters are more distinct when using a
restricted set of features. Future research should investigate the value of variance-based
feature selection on supervised machine learning models predicting clinically informative
parameters. Our findings indicate that these models might be improved by this technique.

5. Conclusions

In summary, we demonstrate that the majority of VOCs are consistently measured
in severe asthma patients over a short-term period of stability. We demonstrate that
the exclusion of erratic VOCs improves the performance of machine learning models
without sacrificing salient discriminatory data, including sensitivity to underling airway
inflammation, and may represent a novel adjunct to future trial design.
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