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In non-targeted ‘omics applications liquid or gas chromatography 
(LC or GC) is typically combined with mass spectrometry (MS) for 
analysis of complex biological matrices. 
Molecular features can be missed  by LC-MS due to: 
• Trace component suppression by chemical noise.
• Chromatographically unresolved isomeric species.

The optimised FAIMS scan settings of CF -0.9 to 3.1 Td at DF 240 Td 
at 2 CF scans s-1 were used to analyse: 
• n=10 urine samples from renal cancer patients
• n=10 urine samples from healthy individuals
Raw spectra were used to generate features lists for each CF using 
XCMS using parameters:
• method="centWave",scanrange=c(0,504), peakwidth=c(5,30), 

ppm=25, mzdi�=c(-0.001), snthresh=3, integrate=2, 
fitgauss=FALSE

Produced feature-extracted and feature-aligned data.
An unsupervised, pareto scaled principal component analysis (PCA) 
plot  for data obtained at CF 1.1 Td is shown in Figure 9.
• Pareto scaling used for the analysis as consistent with published 

untargeted metabolomic studies2

The S-plot, a plot of covariance and correlation based on the 
features making up the OPLS-DA model was also plotted. 
• Trend plots for features contributing towards class separation 

with the most confidence were plotted (Figure 11).

Next step is to expand the data set to a statistically significant # of 
patients and validate the identified features by correlating 
multivariate analysis to raw data, as well as cross referencing to 
patient data to identify potential confounders.

The PCA plot shows partial separation indicating di�erences in the 
data sets. 
A supervised o-partial least squares-discriminant analysis 
(OPLS-DA), highlighting the within class and between class 
di�erences, also showed separation (Figure 10).

1. Introduction 5. LC-ultraFAIMS-MS Workflow Validation

• The optimisation of untargeted profiling of the urinary 
metabolome using LC-FAIMS-MS and the data analysis workflow 
required to produce 3D nested data sets has been described.

• The optimised workflow has been applied to demonstrate  proof 
of principle metabolic assessment of urine samples from a renal 
cell cancer cohort vs. healthy controls.

• Following further validation, the LC-ultraFAIMS-MS features list 
will be used to build a predictive model, or classifier, from which 
a probability of disease can be predicted.

• Combining FAIMS into a metabolomic workflow o�ers increased 
peak capacity for untargeted metabolite profiling to diagnose 
disease or stratify an individual’s treatment.

5. Conclusions

Optimisation of nested FAIMS data  acquisition focussed on:
• # and range of FAIMS CF settings to give optimal FAIMS 

separation.
• # of data points within the timescale of the chromatographic 

peaks.
• Optimal sensitivity via chromatographic peak heights and # of 

TOF scans s-1.

The e�ect of the di�erent  MS scan rates and CF ranges on feature 
detection was investigated.
• Acquiring data at 2 CF scans s-1 increased the # of features 

detected, in all cases, despite the decrease in peak intensity 
associated with higher acquisition speeds (Figure 7b, c).

• Increasing to 3 CF scans s-1 did not further increase the # of 
features detected.

The # of features detected by scanning the FAIMS at a rate of 1 CF 
scan s-1 and 2 CF scans s-1 was compared.
• At a S:N of 3, more features were detected using a 2 CF scans s-1 

scan rate (Figure 8a).

Optimal DF was determined based on selectivity and sensitivity.
• The CF vs features plot (Figure 5) shows good coverage across 

the analytical space in the range -1 to +3 Td.
• More features were detected in the higher CF region at the higher 

DFs. 240 Td was selected for further experiments based on 
widest distribution of detected features across the CF range.

As the CF scan is synchronised with the MS acquisition, the # of data 
points across a chromatographic peak is dependent on the # of MS 
scans s-1 and the CF range.
• Increased MS scan rate means more data points can be acquired 

over a given CF range.
• Alternatively, a smaller CF step size could be applied, increasing 

the # of data points across the CF peak whilst maintaining the # 
of CF data points across LC peak.

• Faster ToF scan rates reduced peak intensity (Figure 6).

4. LC-ultraFAIMS-MS optimisation

Figure 1. LC-MS and 
LC-ultraFAIMS-MS feature 

determination

Figure 5. Detected features at DFs of 230, 240 and 250 Td

Figure 9. Unsupervised PCA (Pareto Scaling) plot at 1.1 Td CF 

Figure 10. OPLS-DA plot at 1.1 Td CF 

Figure 11. Example Trend plots of features contributing towards class separation 

Figure 6. (a) Raw EIC for m/z 273 across all CFs (black) 10 spectra s-1 and (red) 20 
spectra s-1, showing twice as many CF scans across the LC peak and (b) 

deconvoluted LC-MS peak at CF of 1.6 Td at 20 spectra s-1

Figure 7. Comparison of # of features detected in experiments 3 a-f as described in Table 1

To determine if this result was accurate, or a result of increased 
noise using the faster scan rate, the analysis was repeated at a S:N 
of 10 (Figure 8b).
• Whilst total # of features decreased, the faster scan rate again 

produced more features than the slow scan rate. 
• 2 CF scans s-1 scan rate was used for analysis.

Figure 8. Comparison of features detected at 1 CF scan s-1 and 2 CF scans s-1 at (a)S:N of 
3 and (b) S:N of 10

Figure 2. (a) ultraFAIMS chip and system (b) installed on Agilent 6230 ToF-MS   

Figure 3. Integrated 
LC-ultraFAIMS-MS analysis

Figure 4. LC-ultraFAIMS-MS feature extraction workflow
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Analysis was performed on a 6230 TOF-MS and a 1290 series LC 
(Agilent, Santa Clara, US) combined with an ultraFAIMS device 
(Owlstone Medical Ltd, Cambridge, UK).

• The key dimensions of the 
ultraFAIMS device are the 
100 µm electrode gap and 
700 µm path length 

• The small scale is key to the 
ability to integrate into the 
LC-MS workflow; an entire 
CF scan s-1 can be achieved, 
making the scanning 
approach compat ib le  
with chromatographic 
timescales.

• The CF values are 
synchronised with MS 
acquisition so a mass 
spectrum is acquired for 
each CF (Figure 3).

• LC was performed using a 

2. Methods

The workflow for feature extraction from LC-FAIMS-MS files is 
detailed in Figure 4.
A feature was defined as a unique identifier for each component of 
a m/z, a retention time (tR) and a compensation field (CF).

3. Data analysis

Table 1: LC-ultraFAIMS-MS optimisation experiments 

Orthogonality between 
field asymmetric ion 
mobility spectrometry 
(FAIMS), LC and MS 
provides additional unique 
compound identifiers 
with detection of features 
based on (Figure 1):
• Retention time
• FAIMS dispersion and 

compensation fields 
(DF and CF)

• Mass-to-charge (m/z)
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A recent study1 reported a threefold increase in features detected in 
non-targeted profiling of human urine with the addition of FAIMS to 
LC-MS analysis.
Here we describe an optimised workflow to produce 
three-dimensional metabolomics data sets and its application to the 
metabolic assessment of indeterminate masses using urine samples 
from a renal cell cancer (RCC) cohort (DIAMOND study; NRES East 
Of England 03/018).

(a) (b)

reversed phase Poroshell 120 EC-C18 column, 2.1 x 100 mm, 
particle size 2.7 µm (Agilent Technologies).
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