The effect of oral iron supplementation on hydrogen and methane breath testing (HMBT) and gastrointestinal symptoms in healthy volunteers.

Authors: Rory Stallard¹, Ahmed Tawfike¹, Federico Ricciardi¹, Agnieszka Smolinska^{1,3}, Liz Thompson¹, Amerjit Kang¹, Kirk Pappan¹, Sarah Bloor², Anthony Hobson², Max Allsworth¹, Nabeetha Nagalingam¹

1. Owlstone Medical Ltd., Cambridge, Cambridgeshire, UK, 2. Functional Gut Clinic, Manchester, Greater Manchester, UK, 3. Maastricht University, Maastricht, The Netherlands

INTRODUCTION

- Oral iron supplementation is associated with gastrointestinal side effects e.g. constipation and bloating
- Iron is an important energy source of gut microbiota methanogenesis and increased breath methane is associated with constipation and bloating (1).
- Therefore, we hypothesised that healthy volunteers taking oral iron for 28 days would see an increase in methane gas compared to baseline.

METHODS

- 48 healthy volunteers completed the study.
- They attended for 2 study visits, one at baseline and then 28 days after taking 400mg ferrous sulphate daily.
- At each study visit a 3hr lactulose HMBT was performed. Participants also completed the irritable bowel syndrome severity scoring system (IBS-SSS) at baseline and day 28 along with a daily study diary to assess changes to bowel movements, stool consistency and symptoms.

RESULTS

- 15 participants (28%) were methane producers, with ≥10ppm at baseline.
- There was an increase in total methane production (over the 3hr lactulose HMBT) within the methane positive population from 386ppm at Day 1 vs 474ppm at Day 28, but this was not significant (p=0.125).
- Total hydrogen production was significantly lower over the lactulose HMBT between Day 1 and Day 28 after oral iron supplementation (p=0.005), **Table 1**.
- There was a significant increase in IBS-SSS from Day 1 to Day 28 (p=0.030), however values were still in the sub-clinical range (2).
- The study diary did not reveal any significant difference in any parameter measured.

Table 1: Comparison of hydrogen production via the breath test. Values are presented as mean ± standard deviation. Samples taken every 15 minutes from lactulose ingestion.

Total hydrogen production between time points (minutes)	Day 1 (mean ± SD, ppm)	Day 28 (mean ± SD, ppm)	p
0-45	30.9 ± 46.5	32.8 ± 99.1	0.246
0-60	49.2 ± 56.8	33.4 ± 46.5	0.021
0-90	113.8 ± 93.4	79.5 ± 79.5	0.011
60-90	82.7 ± 69.3	57.2 ± 53.8	0.007
90-180	307.3 ± 190.1	237.2 ± 155.4	0.009
0-180	385.2 ± 239.3	291.4 ± 196.7	0.005

Table 2: Analysis of IBS-SSS score when completed on Day 1 vs Day 28. P-value determined via Wilcoxon signed ranks test. (2).

	Day 1 mean score	Day 28 mean score	p
Q1 (abdominal pain severity)	2.64	7.74	0.004
Q2 (abdominal pain day /10)	3.21	8.68	0.023
Q3 (bloating severity)	7.36	10.8	0.124
Q4 (bowel functioning)	21.3	19.8	0.824
Q5 (symptoms interfere with daily life)	4.34	10.6	<0.001
Total	38.9	58.7	0.030

CONCLUSION

- Oral iron supplementation is well tolerated in healthy volunteers, only causing mild increases in gut symptoms which may be indicative of changes to gut microbiota composition and function.
- Changes to methane post-iron were not significant in healthy volunteers, but may be more pronounced in a clinical population where iron is taken over longer periods and colonic dysbiosis is more prevalent.
- Significant decreases in hydrogen production need further investigation, but indicate microbiota changes in response to oral iron.

REFERENCES

- 1. Bloor, S. R., Schutte, R. & Hobson, A. R. Oral Iron Supplementation—Gastrointestinal Side Effects and the Impact on the Gut Microbiota. *Microbiol. Res.* **12**, 491–502 (2021).
- 2. Francis, C. Y., Morris, J. & Whorwell, P. J. The irritable bowel severity scoring system: a simple method of monitoring irritable bowel syndrome and its progress. *Aliment Pharmacol Ther* **11**, 395–402 (1997).

