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The device has been tested with chemical standards (acetone, isopropanol and
1-propanol). The PCA results for these tests are shown in Figure 3.

CONCLUSION5

The functionality of the developed device was demonstrated with the testing
of chemical standards and a simplified case-control study using peppermint oil.
It is our intention to deploy this system in a UK hospital in upcoming breath
research studies.
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INTRODUCTION1

Modern breath analysis focuses on the detection of exhaled volatile organic
compounds (VOCs) for the diagnosis and/or monitoring of disease. Breath
VOCs are the by-products of normal metabolic activity, and in some cases,
specific biomarkers associated with disease (e.g. cancer and COPD [1,2]).

It has long been suggested that applications of diagnostic breath analysis
must extend beyond laboratories and pilot studies to standard clinical
practice and home-use [3]. The latter requires a compact, personal and
portable diagnostic device, capable of sampling and analysing breath at any
time or place.

Most breath analysis technologies are “high-end” (expensive and complex).
However, the latest generation of MEMS technology metal oxide (MOX) gas
sensors could provide an alternative low-cost solution.

While no single analysis technique can provide complete diagnosis of an
individual, electronic nose (E-nose) technology has the advantages of being
relatively low-cost, low-power, user-friendly and portable.

In this work, we report on the design and development of a compact,
internet-of-things (IoT) enabled E-nose for breath analysis.

A radar plot of normalised features is shown in Figure 5 and a generated ROC
curve is shown in Figure 6. These results demonstrate that the developed unit
is capable of detected changes in exhaled breath.

Figure 6: ROC Curve

The developed unit includes an array of 10 MEMS MOX-based gas sensors
(Table 1), including many of the most relevant sensors currently available.
Our system (Figure 1) is compact and uses a microcontroller with Wi-Fi
capabilities (ESP32, Espressif Systems, China) for integration with future IoT
infrastructure.

BREATH SAMPLING3

Our E-nose design (Figure 2) includes an integrated sampling system, using a
heated (35C) sampling tube (50mL volume) with a CO2/Temp/Hum gas sensor.
This method samples end-tidal breath using the displacement principle.

Sensor Manufacturer

CCS811 ams

SGP30 Sensirion

BME680 Bosch

iAQ-Core C ams

ZMOD4410 IDT

MiCS-6814 SGX

Dual Sensor AlphaSense

TGS-8100 Figaro

TGS-2620 Figaro

AS-MLV-P2 ams

Table 1: Deployed SensorsFigure 1: Warwick Breath E-nose

Figure 3: Chemical Standards PCA Results

Figure 2: System Diagram

ANALYSIS & RESULTS4

Exhaled breath samples were collected from 18 volunteers (15 males, 3
females, ages 23-28). A typical output response is shown in Figure 4.

To simulate a control vs. disease group case-control study, a peppermint
breath test was conducted. Subjects provided breath samples pre- and post-
consumption of a peppermint oil capsule. This produces a well-defined, but
temporary, change in breath composition.

Classification analysis demonstrates an AUC ± 95% = 0.80, sensitivity = 0.83
(0.59 – 0.96), specificity = 0.72 (0.47 – 0.90), p-value = 0.0007. These results
were achieved using the Support Vector Machine (SVM) classifier.

Figure 4: Typical Output Response

Figure 5: Radar Plot of Normalised Features
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