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At a S:N of 3, more features were detected using a 2 CF scans s-1 scan rate (Figure 9a).
To determine if this result was accurate, or a result of increased noise using the faster scan rate, 
the analysis was repeated at a S:N of 10 (Figure 9b).

5. Feature extraction
Features lists for each CF were aligned into one list based on retention time  and m/z. 
Conditional formatting was applied to the features to deconvolute features in the FAIMS 
dimension. Features  present in multiple CFs were identified as either adjacent or separated 
into multiple features in the CF dimension, such as in the case of isobars. An example of both 
is shown in Figure 8.

6. Conclusions

References

• The optimized FAIMS scan settings 
were used to generate a 
three-dimensional nested data set  
(Figure 10).

• The method is now being applied 
to the urinary analysis of a 674 
patient colorectal cancer cohort in 
collaboration with University 
Hospital of Coventry and 
Warwickshire.

• The LC-ultraFAIMS-MS features list 
will be used to build a predictive 
model, or classifier, from which a 
probability of disease can be 

 predicted. The additional features available in LC-ultraFAIMS-MS, compared to LC-MS alone, 
increase the likelihood of successfully building such a classifier.1. Arthur, KA, Turner, MA, Reynolds, JC, Creaser, CS.; Anal. Chem., 2017, 89, 3452–3459.

Figure 7. Comparison of the number of features detected in experiments 3 a-f as described in Table 1

Figure 8. Example CF scans of detected features (a) single feature detected in adjacent CF ands (b) multiple features 
showing separation of isobars

Figure 9. Comparison of features detected at 1 CF scan s-1 and 2 CF scans s-1 at (a) S:N of 3 and (b) S:N of 10

Figure 10. m/z vs tR  of a urine sample showing features detected 
at a S:N of 3; each CF is color di�erentiated

• Upon visual verification of the determined features, the lower sensitivity observed at the 2 
CF scan s-1 rate resulted in increased noise in the baseline, accounting for the increased 
number of unique features detected at the S:N 3. 

• 1 CF scan s-1 rate was therefore chosen for subsequent analysis, as a compromise between 
sensitivity and the number of data points across the peak for untargeted semi-quantitative 
analysis.

• The e�ect of the di�erent MS scan rate and CF ranges on feature detection was  
investigated.

• Acquiring data at 2 CF scans s-1 increased the number of features detected, in all cases, despite 
the decrease in peak intensity associated with higher acquisition speeds (Figure 7b, c).

• Increasing to 3 CF scans s-1 did not further increase the number of features detected.

In non-targeted ‘omics applications, liquid or gas chromatography (LC or GC) is typically 
combined with mass spectrometry (MS) for analysis of complex biological samples.
LC-MS molecular features can be missed due to:

Proteowizard’s “msconvert” was used to convert the Agilent 
MassHunter .d data into mzML. 
An in-house developed Python based tool was then used to split 
the LC-FAIMS-MS data and convert it to individual .mzML files 
associated with each FAIMS CF setting. 
The saved .mzML files were subjected to feature extraction using 
XCMS package in R.
The workflow for feature extraction from LC-FAIMS-MS files is 
detailed in Figure 4.
A feature was defined as a unique identifier for each component of 
a m/z, a retention time (tR) and a compensation field (CF).

1. Introduction

Analysis was performed on a 6230 TOF-MS and a 1290 series LC (Agilent, Santa Clara, US) 
combined with an ultraFAIMS device (Owlstone Medical Ltd, Cambridge, UK).

Optimization of the acquisition of nested FAIMS data focussed on:
• Number and range of FAIMS CF settings to give optimal FAIMS separation
• Number of data points within the timescale of the chromatographic peaks 
• Optimal sensitivity via chromatographic peak heights and number of TOF scans s-1.
Full data acquisition parameters are shown in Table 1.

Optimal DF was determined based on trade o� between selectivity and sensitivity.

Optimization of chromatography to achieve optimal retention of small polar molecules and 
coverage of features across the chromatographic range was carried out prior to FAIMS 
optimization experiments.

The key dimensions of the ultraFAIMS device are 
the 100 µm electrode gap and 700 µm path length.
The small scale is key to the ability to integrate into 
the LC-MS workflow.
• The short ion residence time means an entire CF 

scan per second can be achieved, making the 
scanning approach compatible with 
chromatographic timescales.

• The CF values are synchronized with MS 
acquisition so a spectrum is acquired for each 
CF (Figure 3).

• Synchronization was provided via a contact 
closure interface from the binary pump on the LC.

• LC was performed using a reversed phase 
Poroshell 120 EC-C18, 2.1 x 100 mm, particle size 
2.7 µm (Agilent Technologies).

2. Methods

3. Data analysis

4. LC-ultraFAIMS-MS optimization

• Trace component suppression by chemical 
noise.

• Chromatographically unresolved isomeric 
species.

Orthogonality between FAIMS, LC and MS 
provides additional unique compound identifiers 
with detection of features based on:
• Retention time (RT)
• FAIMS dispersion and compensation fields 

(DF and CF)
• Mass-to-charge  (m/z) (Figure 1)

Figure 1. LC-MS and LC-ultraFAIMS-MS feature 
determination

Figure 4. LC-ultraFAIMS-MS 
feature extraction workflow

Table 1: LC-ultraFAIMS-MS optimization experiments 

Figure 5. Comparison of features detected at DFs of 
230, 240 and 250 Td

Figure 6. (a) Raw EIC for m/z 273 across all CFs (black) 10 spectra s-1 and (red) 20 spectra s-1, showing twice as many CF scans 
across the LC peak and (b) deconvoluted LC-MS peak at CF of 1.6 Td showing twice as many data points at 20 spectra s-1

Figure 3. Integrated LC-ultraFAIMS-MS analysis

Figure 2. (a) ultraFAIMS chip and source schematic (b) installed on Agilent 6230 ToF-MS   

Test MS scan rate (s-1) per s m/z start m/z end Index Start CF (Td) End CF (Td) N CF steps N CF actual CF step size (Td) N Repeats Start DF (Td) End DF (Td) N DF Steps

1a 12 1 80 1500 0 -0.9 4.1 10 12 0.5 503 250 250 0

1b 12 1 80 1500 0 -0.9 4.1 10 12 0.5 503 240 240 0

1c 12 1 80 1500 0 -0.9 4.1 10 12 0.5 503 230 230 0

2 24 2 80 1500 0 -0.9 4.1 10 12 0.5 1007 Test 1 0Test 1

3a 10 1 80 1500 0 -0.9 3.1 8 10 0.5 503 Test 1 0Test 1

3b 20 2 80 1500 0 -0.9 3.1 8 10 0.5 1007 Test 1 0Test 1

3c 18 1 80 1500 0 -0.9 3.1 16 18 0.25 503 Test 1 0Test 1

3d 6 1 80 1500 0 -0.9 3.1 4 6 1 503 Test 1 0Test 1

3e 12 2 80 1500 0 -0.9 3.1 4 6 1 1007 Test 1 0Test 1

3f 18 3 80 1500 0 0-0.9 3.1 4 6 1 1511 Test 1 Test 1
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• The CF vs features plot (Figure 5) shows 
good coverage across the analytical space 
in the range -1 to +3 Td.

• More features were detected in the higher 
CF region at the higher DFs as distribution 
increased with increasing DF.

• 240 Td was selected for further 
experiments based on widest distribution 
of detected features across the CF range.

• As the CF scan is synchronized with the MS 
acquisition, the number of data points 
across a chromatographic peak is 
dependent on the number of MS scans s-1 
and the CF range.

• Increased MS scan rate means more data points can be acquired over a given CF range.
• Alternatively, a smaller CF step size could be applied, increasing the data points across the
• CF peak whilst maintaining the number of CF data points across the LC peak.
• Faster ToF scan rates do, however, reduce peak intensity (Figure 6).
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A recent study1 reported a threefold increase in features detected in non-targeted profiling of 
human urine with the addition of FAIMS to LC-MS analysis.

Here we describe an optimized workflow to produce three-dimensional metabolomics data 
sets and its application to urinary analysis of a colorectal cancer cohort.
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Owlstone Medical Ltd., 162 Cambridge Science Park, Cambridge, CB4 0GH, UK
For further information, email: ultrafaims@owlstone.co.uk


