

Stable Isotope Breath Tests: Applications, Challenges and Opportunities

Dr Douglas Morrison Scottish Universities Environmental Research Centre douglas.morrison@glasgow.ac.uk

INSPIRING PEOPLE

Breath tests – what's new?

460 – c. 370 BC

O=C=O

1950

The First Glycine Metabolic Pool in Man

BY R. W. E. WATTS AND J. C. CRAWHALL The Medical Unit, St Bartholomew's Hospital, London, E.C. 1

(Received 29 January 1959)

The number of reported investigations which have and the first glycine metabolic pool during a period been designed to determine directly with the help of isotopically labelled intermediates whether a given precursor-product relationship operates in man in vivo are still relatively few. In connexion with our studies on the conversion of glycine into oxalate in subjects with primary hyperoxaluria (Scowen, Crawhall & Watts, 1958), we required to

of repetitive feeding with, and after a single dose of, isotopically labelled glycine.

Stable isotopes were used in the present work as in the subsequent clinical investigations to eliminate any slight risk of radiation injury. Some of the results presented here have been the subject of preliminary communications (Crawhall & Watts,

1959

1971

Barriers to uptake of BT's

- Lack of sensitivity and specificity
 - Lack of appropriate target
 - Lack of / cost of appropriate labelled substrate
 - Limits impact on clinical decision making
- Need to define population reference ranges
 - Ambiguous
 - Need to re-define for each new target population
- Technology
 - IRMS not a standard laboratory MS (Infrared options now available)
- Ignorance
 - Stable isotope tests "complicated" compared with other diagnostic tests
 - Requirement for additional infrastructure / expertise

What do we want from breath (tests)?

- 1. Diagnostic accuracy / clinical decision making
- 2. Increased understanding of real physiology / function
- 3. Non-invasive / rapid
- 4. Field deployable

Adding an isotope tracer "targets" a specific **function** Fingerprint ("breathome") complicated but potentially useful

Breath tests in small intestinal disease

Test	sensitivity	specificity	Comments	Refs
GHBT	62 %	78 %	ROME CONSENSUS: H2-BREATH TESTING IN GI DISEASES. Glucose Breath Test is the most accurate hydrogen breath test for non-invasive diagnosis of SIBO.	Corazza et al. Gastroenterol. 1990
LHBT	52 %	86 %	SIBO	Gasbarrini et al, APT, 2009
Sohbt	71 %	46 %	Celiac Disease	Tveito et al. Scand. J. Gastroenterol, 2009
¹³ C SoBT	74 %	85 %	Celiac Disease	Tveito et al. Scand. J. Gastroenterol, 2009
¹³ C XBT	88 %	84 %	Celiac Disease	Tveito et al. Scand. J. Gastroenterol, 2010.
¹³ C SBT	98 %	94 %	chemotherapy-induced small intestinal damage, rats	Tooley et al, Cancer Chemother Pharmacol 2010

H. Pylori UBT: a paradigm in ¹³C BT's

Cut-off Sensitivity

10min	98.6%
30min	93.8%

Specificity

98.6%	Mauro et al, 2006
99.1%	Cardinali et al, 2003

Challenge for diagnostic test: GI transit

Original article

Increased accuracy of the carbon-14 D-xylose breath test in detecting small-intestinal bacterial overgrowth by correction with the gastric emptying rate

Chi-Sen Chang¹, Gran-Hum Chen¹, Chia-Hung Kao², Shyh-Jen Wang², Shih-Nen Peng¹, Chih-Kuen Huang¹, Sek-Kwong Poon¹

¹ Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C. ² Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.

Received 2 February and in revised form 13 April 1995

Test	sensitivity	specificity	Comments
¹⁴ C XBT	60 %	90 %	Uncorrected
	90 %	100 %	Corrected for Gastric emptying

Using stable isotopes to interrogate function *in vivo* 1. Overnutrition

Under and over nutrition converge in the gut

2020

Substrate utilisation – its complicated!

Edwards et al, 2002

Using pea genetics and stable isotopes to probe gut physiology

Exploiting a natural mutation in peas (Pisum sativum) starch branching enzymes

¹³C appearance in gut microbial RNA

- Rapid digestion of carbohydrate is associated with higher post-prandial glucose
- Shifting carbohydrate load to the colon is associated with improved glycaemia

Protein oxidation

4 day restriction of protein intake has no effect on protein oxidation of ¹³C milk protein in healthy males

Reckman et al, 2019

Combining BTs to understand gut physiology

1.0

0.5 0.0

2

3

OCTT_{13CO2} (h)

¹³C acetate, ¹³C lactose ureide, breath H₂

6

(in some cases)

Byrne et al, 2018

Using isotopes to target regions of the gut in obesity

Optimising inulin propionate ester formulation

Polyviou et al, 2016

Using stable isotopes to interrogate function *in vivo* 1. Undernutrition

Intestinal brush border functionality

ORIGINAL ARTICLE

Duodenal Disaccharidase Activities in the Follow-up of Villous Atrophy

in Coeliac Disease

U. Nieminen, A. Kahri, E. Savilahti & M. A. Färkkilä Helsinki University Hospital, Dept. of Medicine, Division of Gastroenterology, Helsinki, Finland; Helsinki University Hospital, Hospital for Children and Adolescents and Helsinki University, Dept. of Pathology, Helsinki, Finland

(A) IAEA tomic Energy Agency TOPICS ~ SERVICES ~ RESOURCES ~ NEWS & EVENTS~ ABOUT US ~

Stable Isotope Techniques Used to Study Link Between Gut Health and Child Growth

Jeremy LI, IAEA Office of Public Information and Communication

AUG 16

2017

%

cPDR90,

Related Stories

Poor Sanitation and Malnutrition: Experts to Iscuss Connections and Correlations, and How Isotope Techniques can Help

Related Resources

- % Infant and Young Child Nutrition
- % Contributing Solutions for Nutrition, IAEA Bulletin (Vol.55-1,
- March 2014)
- % Human Health Campus Nuclear Techniques in Nutrition

diarrhea control

control

Syed et al, 2018

¹³C-sucrose breath test in EED

2g/kg or 20g C₄sucrose

- 20g C₄sucrose
- Higher L/R in Cl
- normal sucrase levels
- no relationship with mucosal damage

CSID (Robayo-Torres et al, 2009)

20mg ¹³C-sucrose / 20mg ¹³C-glucose

Need for a new ¹³C sucrose BT

- "naturally enriched" sucrose (maize) does not yield sufficient signal to noise
- Large dose (20g) to achieve breath signal is not feasible in children
- Highly enriched ¹³C-sucrose confers many advantagesbut
 - Which labelled variant?
 - What is the correct dose?
 - Flooding dose vs. breath biopsy?
 - Does it report on villous atrophy in children at risk of EED?

WP1: Optimising a New ¹³C Sucrose Breath Test Protocol in Adults (Glasgow)

WP2: Validation of ¹³C Sucrose Breath Test Against Intestinal Biopsies in Paediatric Coeliac Associated Enteropathy in Australia (Adelaide)

WP3: Validation of ¹³C Sucrose Breath test Against Intestinal Biopsies in Environmental Enteropathy in Zambia (Lusaka)

WP4:Validation of the ¹³C Sucrose Breath Test Against L:R Ratio and Kynurenine:Tryptophan Ratios in Peruvian Children Living in High EED Risk Area. (Lima)

Phase 2 plan

Site	Readouts	Population	Aim
UK	¹³ C SBT, L/R,	Adults (n=20)	Protocol
ZAM1	¹³ C SBT, L/R, biopsy	Adults (n=40, +/- EED)	Adult EED, biopsy
AUS	¹³ C SBT coeliac, L/R, biopsy	Children (n=60, +/- CD, remission)	Coeliac vs. healthy, biopsy
BGD	¹³ C SBT, L/R	Children (n=100)	¹³ C SBT vs. biomarkers, anthropometric
IND	¹³ C SBT, L/R	Children (n=100)	¹³ C SBT vs. biomarkers, anthropometric
JAM	¹³ C SBT, L/R	Children (n=100)	¹³ C SBT vs. biomarkers, anthropometric
KEN	¹³ C SBT, L/R	Children (n=100)	¹³ C SBT vs. biomarkers, anthropometric
PER	¹³ C SBT, L/R	Children (n=40)	¹³ C SBT vs. biomarkers, anthropometric
ZAM2	¹³ C SBT, L/R	Children (n=100)	¹³ C SBT vs. biomarkers, anthropometric

Can we probe specific functions in the gut?

Pancreatic exocrine function / Intestinal protease activity

Benzoyl L-tyrosyl L-[1-13C]alanine

Targeting gut function

1. Hypothesis driven – isotope labelled substrates

2. Hypothesis generating - "omics"

Understanding the role of diet

1. Macronutrient utilisation – multi-isotope approaches

Hypothesis driven: targeted approaches

Exploiting 'omics' to develop targeted tests: a TB paradigm

"An extensive genomic and metabolomic search supported the hypothesis that the enzyme CO dehydrogenase (CODH) might provide a suitable and highly specific metabolomic route to enable TB detection." CO + $H_2O >> CO_2$ + 2H+ 2e⁻

TABLE 1 Common lung pathogens expressing urease do not express CODH a

	Expression of:		
Pathogen	Urease (source)	CODH	
Pseudomonas aeruginosa	Yes (38)	No	
Acinetobacter baumannii	Yes (8)	No	
Klebsiella pneumoniae	Yes (9)	No	
Haemophilus influenzae	Yes (39)	No	
Staphylococcus aureus	Yes (40)	No	

^{*a*} Data are collected from prior work discussing genes or enzymatic activity. In this work, only genes were tested, and none of the tested strains expressed CODH.

Hypothesis generating: Untargeted approaches

GCMS and field Asymmetric Ion Mobility Spectrometer (FAIMS) for VOCs

Bomers et al, 2015

Macronutrient utilisation – multi-isotope approaches

Spirulina digestibility: U-13C-spirulina + U-2H labeled amino acid mixture + 13C6-phenylalanine + legume + rice Legume digestibility : U-13C-spirulina + 13C6-phenylalanine + 2H labeled legume + rice Х X X X X X Hourly mini-meals Х X х х **Blood samples** 111 Breath samples -0.05 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 Time period (hours)

Devi et al, 2018

Technology drivers

1. New isotope tests

- non-invasive, repeatability
- sensitivity / specificity
- tracer costs / sources
- instrumentation

IRMS, δ^2 H, δ^{15} N, δ^{13} C & δ^{18} O

Mid-IR, δ^{13} C & δ^{18} O in CO₂

FTIR, $\delta^2 H_2 O$

2. Usability

- point of care
- field deployability
- instrumentation / diagnostic capability

Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis

Stefan Hanf,[†] Robert Keiner,[†] Di Yan,[†] Jürgen Popp,^{†,‡,§} and Torsten Frosch^{*,†,‡}

[†]Leibniz Institute of Photonic Technology, Jena, Germany [‡]Institute for Physical Chemistry, Friedrich-Schiller University, Jena, Germany [§]Abbe School of Photonics, Friedrich-Schiller University, Jena, Germany

Applied Physics B

April 2018, 124:62 | <u>Cite as</u>

A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 μm for intracavity absorption spectroscopy

Authors

Authors and affiliations

Peter Fjodorow 🖂 , Ortwin Hellmig, Valery M. Baev

Sami (a) PAR Harri Occ. 12, 2019 R. NOWERT DESERTION NATIONAL (b) PARTINE PARTINE R. NOWERT DESERTION NATIONAL (c) PARTINE PARTINE R. NOWERT DESERT

Department Application Publication on Pub. No.: US 2015/0301019 A

- Diagnostic accuracy of ¹³C BTs reduced beyond stomach
- SI labelled probes excellent for probing function (gut and other organs)
- Combining SI probes can be a powerful tool to gain mechanistic insight
- Some ¹³C BTs have potential in field settings
 - Correct tracer, correct technology
- Other isotopes beyond ¹³C can be useful (even in breath)

Acknowledgements

Mike Lean Tom Preston Hannah Harris Christine Edwards Graeme Milligan Nicole Reichardt

Imperial College London

Gary Frost Ed Chambers Claire Byrne Alexander Viardot Arianna Psichas Steve Bloom Waljit Dhillo Kevin Murphy ABERDEEN

Harry Flint Silvia Duncan Petra Louis Janice Drew Linda Williams

National Institute

for Health Research

Pete Wilde

Fred Warren

Catrina Edwards

John Innes Centre Unlocking. Nature's Diversity

Claire Domoney

UWS UNIVERSITY OF THE

Catriona Tedford Kenneth MacDougall Emma Hamilton David Barn Robin Stewart BBSRC bioscience for the future

The Scottish Government

Food Standards Agency

Thank you!