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The application of FAIMS gas analysis in
medical diagnostics
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R. P. Arasaradnamf

There is an ever increasing need to develop new tools to aid in the diagnosis and monitoring of human

diseases. Such tools will ultimately reduce the cost of healthcare by identifying disease states more

quickly and cheaply than current practices. One method showing promise is the analysis of gas-phase

biomarkers from human breath, urine, sweat and stool that reflect bodily metabolism. Analysis of these

volatiles by GC MS requires specialised infra-structure and staff, making it unsuitable for a clinical setting.

Point of care sensor based technologies such as eNoses often suffer from stability and sensitivity issues.

Field-Asymmetric Ion Mobility Spectrometry (FAIMS) has potential to fulfil this clinical need. In this paper

we review the medical need, the technology, sampling methods and medical evidence thus far. We con-

clude with reflecting on future developmental steps necessary to bring the device into medical practice.

Introduction
The last 100 years has seen a huge increase in new techno-
logies and approaches applied to medicine. Hospitals are now
filled with a plethora of analytical instruments that can aid the
clinician in making an informed choice of the appropriate
treatment pathway. However, many of these techniques are
still focussed towards secondary care and require the use
of expensive, dedicated facilities to undertake diagnosis.
However, with the drive to reduce medical expenditure, we are
seeing an increase in point-of-care approaches moving diag-
nostics from secondary to primary care and even the home.

One approach which has been mooted to aid in this change
has been the use of gas phase biomarkers. It is well known
that these volatile organic compounds (VOCs) are the end
product of metabolic processes in the body that are modulated
by a variety of diseases.1 The best known example perhaps is
the exhalation of acetone by diabetic patients during keto-
acidosis.2 Because many of these compounds can be detected in
normal human samples, (such as breath, urine, stool, blood or
sweat) analysis of volatile biomarkers is non-invasive, offering
a route into primary care. This makes VOCs very attractive bio-

markers for monitoring, diagnosis and prognosis of disease.
The research challenge of using such markers is similar to
that found in many other ‘omics’ techniques.3 The high
dimensionality of the data means it is challenging to identify
the biomarkers in the background. Furthermore, many VOCs
are highly unstable meaning they are easily affected by altered
measuring conditions. Finally, to facilitate implementation of
these techniques, the analysis should not require specialised
laboratory facilities or significant infra-structure (e.g. special-
ised gases), be easy to operate and have both a low instrument
and unit test cost.

Despite its potential there are currently no tools
implemented in clinical practice working on the basis of
VOCs. Much of the previous work in this field has deployed
gold-standard methods for gas analysis, focussing much on
GC/MS (Gas Chromatography/Mass Spectrometry) and similar
techniques. However, such instruments have several limit-
ations for many clinical settings. These techniques require
extensive training and expertise and expensive equipment,
making these procedures costly and time-consuming. Further-
more, the nature of sample introduction and data-analysis pre-
cludes it from being used as a point of care tool. The latter is
desired for many medical applications, especially those focus-
ing on infectious disease and monitoring of chronic inflam-
matory conditions. These reasons have sparked considerable
interest in using instruments such as the “Electronic Nose”,
based on arrays of discrete, non-selective sensors, for disease
diagnostics. At first glance, these instruments fulfill many of
the requirements for a medical scenario. They are relatively
cheap, use air as the carrier, are simple to use and can be
reduced in size for point-of-care use. The downside of these
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approaches is that many of these devices unfortunately suffer
from poor intra-device repeatability, limited temporal stability
and poor selectivity due to the promiscuous nature of the
chemical interactions between the sample and the sensors.4

This means translation to clinical practice is severely ham-
pered: a diagnostic algorithm will have to be built separately
for each device rather than transferring data from one device
to another. More recently, ion mobility techniques have shown
promise. They provide high information content, physical
measurement of complex chemical headspaces, but still fulfill
many of the requirements needed as a point of care tool. One
specific ion mobility method receiving considerable interest is
FAIMS (Field Asymmetric Ion Mobility Spectrometry). Its prin-
ciple is based on assessing the physicochemical properties of
VOCs, which means compounds can be selectively identified
in a complex background. Furthermore, detectors show good
intra device stability allowing a plug-and-play application in
clinical practice after the initial validation. In this article we
review previous work using FAIMS applied to the medical
sector and lessons learnt for its practical application.

Ion mobility spectrometry

When an ion in a vacuum is exposed to an electric field, it
experiences a constant force, F = qE, and its motion will
depend only upon its mass and charge. However, if it is sur-
rounded by a buffer gas, when the electric field is applied, col-
lisions with the atoms of the gas will rapidly cause it to stop
accelerating. Its terminal velocity, v, is related to the electric
field strength, E, by v = KE, where K, the ion’s mobility,
depends on its collision cross-section. An ion with a larger
cross-section will collide more often, and hence will have a
lower terminal velocity, and lower K. For a given ion, K is not a
constant, but is instead a function of the electric field strength
i.e. K = K(E). Ion mobility spectrometry (IMS) uses measure-
ments of ions’ mobility to identify them.

Field asymmetric ion mobility
spectrometry (FAIMS)

Field asymmetric ion mobility spectrometry (FAIMS) exploits
the fact that by applying an alternating electric field across the
path of the ions, a filter can be set up that allows only certain
ions through. Vapour from a sample is first ionized, and then
passed between two parallel plates. An alternating voltage is
applied across the plates, creating an alternating electric field
in the space between them. The form of the voltage, shown in
Fig. 1a, is a short-duration, high-amplitude positive section fol-
lowed by a long duration, low-amplitude negative section. The
electric field is applied in a direction perpendicular to the
ions’ initial direction of travel through the channel, which will
give an additional velocity v = KE to the ions in the direction of
the field. As a result, the ions will travel along a saw-tooth tra-
jectory in the channel, as shown in Fig. 1b. The alternating

voltage is designed so that the product of the voltage and the
pulse duration is the same for the positive (pink in Fig. 1a)
and negative (blue in Fig. 1a) sections. This means that if the
ion’s mobility, K, is the same under high-and low-field con-
ditions, then the ion will move upwards during the positive
section the same amount as it moves downwards during the
negative section, giving a net vertical movement of zero, and
allowing the ion to pass through the channel (along the path
marked 1 in Fig. 1b). However, as mentioned earlier, the mobi-
lity will in general not be constant, but will instead vary with
field strength. If the mobility increases at high field strength,
the ion will travel further vertically during the high-field phase
than the low-field phase, and follow a path like that marked 2,
while a decrease in mobility with increased field strength will
result in an ion following a trajectory like that marked 3. An
ion’s path, then, is determined by its differential mobility
(Khigh − Klow); the greater the difference between the ion’s

Fig. 1 (a) Alternating square wave, (b) ion trajectories in FAIMS and (c)
variation of mobility with increasing field strength.

Minireview Analyst

Analyst This journal is © The Royal Society of Chemistry 2015

Pu
bl

is
he

d 
on

 1
7 

Ju
ly

 2
01

5.
 P

ur
ch

as
ed

 b
y 

bi
lly

.b
oy

le
@

ow
ls

to
ne

.c
o.

uk
 o

n 
29

 J
ul

y 
20

15
.

View Article Online

http://dx.doi.org/10.1039/C5AN00868A


high- and low-field mobilities, the more quickly it will hit the
sides of the channel and be lost. Some examples of the ways in
which differential mobility varies with field strength are shown
in Fig. 1c.

Selecting ions

In order to control which ions pass through the system, an
additional DC voltage can be applied between the plates. Often
referred to as the compensation voltage (CV), its value can be
tuned so as to exactly compensate for the net vertical drift of a
particular ion. By scanning through values of the CV, and
recording the ion current emerging from the channel at each,
we can detect each of the ion types present. The magnitude of
the AC signal may also be altered, meaning the strength of the
electric field (also known as the dispersion field, DF) in the
high- and low-field sections can change (although the ratio
remains constant). Because the mobility is a complicated func-
tion of field strength, this will result in a change in the differ-
ential mobility for each ion. This is important because (a) as
can be seen from Fig. 1c, at low field values, the differential
mobility for all ions is the same (≈0) and (b) even at high field
values, two particular ions may happen to have the same
differential mobility at a particular DF value (as can be seen
from the fact that the lines marked A and B cross in Fig. 1c).
By varying the DF, we can generally find a DF value at which
compounds can generally be separated, as shown in Fig. 2. By
scanning through the range of both DF and CV values, and
recording the ion current at each, we can generate a data-rich
chemical fingerprint, containing information about all of the
compounds present in a sample. An example of this can be
seen in Fig. 4 below.

Experimental application of FAIMS

Two key components with any analytical approach are the
sampling and how the data are analysed. In this section we
consider these components.

Sampling human volatiles

Current medical studies with FAIMS have focussed predomi-
nantly on urine, breath and stool samples. Of these urine has
been the main biological medium of choice – predominantly
due to its high patient acceptability, ease of collection and
better chemical stability. As FAIMS has yet to make it into clini-
cal practice, most samples are collected and then frozen for

later batch sampling. Stool, though less stable, is composed of
far more chemical components, and a similar collection and
testing regime can be applied to produce reliable results. An
example collection and testing regime for urine and stool is
provided below:

• Samples require putting on dry-ice/fridge immediately on
collection;

• Frozen at −80 °C within 2 hours;
• Defrosted to fridge temperature and aliquoted at that

temperature (to reduce chemical loss);
• Use a sample volume between 4 and 10 ml;
• Tested immediately after aliquoting to reduce chemical

loss through increased temperature;
• Analysis of samples at body temperature (37–40 °C), first

allowing the sample to reach temperature over a 10 minute
period.

Ideally, samples should be tested using a standardized
sampling system (for example Owlstone ATLAS system). Such a
system aids in controlling the temperature of the sample,
allows for the accurate control of the flow rate into the instru-
ment and can have heated transfer lines to minimise chemical
adhesion to transfer tubes. Another consideration with stool
and urine samples is the high water content, which can mask
more subtle chemical components. Diluting the air from the
sample with clean, dry air (for example to a ratio of 1 : 3–1 : 4)
reduces its effect resulting in increased sensitivity.

Breath sampling brings its own additional challenges. The
direct introduction of a breath sample into a FAIMS instru-
ment is challenging, due to the difficulty in controlling the
sample flow from the subject. Though there is not a significant
body of work using FAIMS and breath samples there are two
common approaches to overcoming this problem. The first is
to use a breath capture system whereby end-tidal breath is cap-
tured in an inert collection bag (such as Tedlar, shown in
Fig. 3). This sample can then be introduced into the instru-
ment, thereby separating the collection from the testing. It is
worth noting that previous studies have attempted to test the
samples within a few hours of collection, probably due to

Fig. 2 Varying the dispersion field alters the compensation voltage
necessary for different compounds to pass through the system.

Fig. 3 Owlstone Lonestar with Atlas sampling system analysing a
breath sample.
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breakdown of the chemical components in the bag. A second
approach consists of storing breath samples onto chemical
sorbent tubes such as Tenax bypassing the need for immediate
analysis until at least 14 days past sample collection.5 An inter-
national consortium of researchers is currently developing an
open access breath collection device aiming to provide a flex-
ible and reproducible method for breath collection http://www.
breathe-free.org.

Because biological symptoms are inherently unstable, so
are their volatile end products. This means attention should
be paid to possible influencing factors such as dietary intake,
drugs, smoking, environmental exposures, etc. The challenge
in this respect is to balance constraints on subjects with the
ease of use in clinic. As a general rule of thumb any factor
influencing VOCs that is unbalanced between subject classes
should be avoided as it may bias the discriminative signal (e.g.
smoking when comparing obstructive lung disease patients
with controls). With respect to other constraints, such as
dietary, there is not sufficient evidence to suggest standardiz-
ation improves sampling reliability.

Fig. 4 shows a typical chemical output from a healthy indi-
vidual emanating from urine, stool and breath sample using
FAIMS. As can be seen the chemical information of all of these
samples differs immensely.

Data processing

FAIMS produces high-dimensional data (in terms of the
number of features/covariates measured per sample), rich with
chemical information. Processing of such large datasets brings
about its own challenges, which are shared with other omics
approaches.6,7 Most gas phase applications rely on the environ-
ment being stable, with the introduction of a single (or small
number of) chemicals, that can easily be identified as foreign.
In medicine, these chemical changes (either an addition,
reduction or modulation in chemical composition) can be
small when compared with a person’s normal biological
activity and in many cases the disease signals can be swamped
by this “normal” signal. For decades, researchers have relied
on a simple set of analytical tools, with principal component
analysis and linear discriminant analysis being methods of
choice. However, the high dimensional data coupled with the
subtle chemical signals produced by the disease states make
such methods, applied to the raw data, less effective or even
causes them to fail outright.

One approach that has found favour with FAIMS is the use
of compression algorithms to pre-process the data before
feature identification and classification. Of these approaches,
discrete wavelet transforms (as used with JPEG and Audio
files) have been shown to be highly effective in reducing data
complexity and enhancing feature quality, though other
methods (such as Fourier Transforms) can also be effective.
More modern methods such as sparse matrix decomposi-
tion techniques are likely to bring further improvements in
this area.

After data reduction, identification of informative features
is key. Approaches such as statistical hypothesis testing (e.g.

Wilcoxon rank-sum test) have proved highly robust for identify-
ing informative features. Other wrapper-based methods show
promise, as they can identify interactions between individual
features, and the future may be to deploy supervised feature
learning techniques, which can both learn the structure under-
lying the data and also extract those features that are informa-
tive about outcome.

This can be followed by the use of a classification
algorithm. Key is to identify which statistical and machine

Fig. 4 Typical FAIMS output for a (a) stool, (b) urine and (c) breath
sample.
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learning algorithms can best use these processed data to
make predictions. Previous studies have used a range of
modern classification methods to assess the sensitivity and
specificity of a test, for example Random Forest, Sparse Logis-
tic Regression and Support Vector machines. However, it is
interesting to note that no one method wins out and it is
highly dependent on the disease, making the task of
model selection an important consideration. Ultimately any
classifying algorithm should be externally tested by apply-
ing the algorithm to a newly-recruited population. Discrimi-
nating the effects that case-mix and incorrect coefficients
have on the accuracy in the validation population are
important to assess repeatability and transferability of the
algorithms.8

Medical results

With health costs rising rapidly worldwide, clinicians are
under pressure to explore newer and more economical diag-
nostic tools, especially if these are non-invasive. Thus the
study of gases and volatile organic compounds (VOCs) is
becoming increasingly attractive. It was first investigated in
19719 but then seemed to have lost its vogue. The development
of improved analytical instruments and data-analytical algor-
ithms have however resulted in an almost exponential increase
in VOC diagnostics in the medical literature of late, reflecting
its growing importance.

As mentioned, the role of VOC diagnostics in medicine is
particularly attractive due to its non-invasive sampling – that is
use of breath, urine, stool and even sweat. The origins of VOCs
are threefold.9 Firstly, exogenous compounds originate from
external sources we inhale, ingest or absorb through our skin.
These compounds are partly unwanted noise but may be valu-
able in studies of biological exposure and may reflect changes
in resident microbiota relevant to disease development.10,11

Secondly, local compounds originate at the site of the disease
due to effects of the primary disease process such as aberrant
cellular metabolism, cell death and inflammation. Finally,
several volatiles have systemic origins caused by downstream
effects of disease such as increased oxidative stress, catabolism
and immune activation. As can be understood from this
concept the relative contribution of each of these sources to
the identified VOCs depend highly on the sample of choice
and the disease of interest. This makes it an important choice
in method development.

The analytical challenge is to reliably and reproducibly
detect biomarkers of interest at low concentrations in a
complex background. FAIMS has high potential to address this
as the chemical fingerprint can be selectively screened for
target compounds differentiating it from most eNose type
applications. Furthermore the programmable nature of the
technology means that after the initial biomarker validation
steps the sensor can be selectively programmed to focus on
those part of the spectrum that associate with disease. Com-
bined with a diagnostic algorithm established during method

development, such applications can be easily used without
requiring extensive training.

Various disease groups have been studied with FAIMS using
different biological modalities. Table 1 lists these in detail
within three broad categories – cancer, inflammation and
infection. These three overarching categories underpin most
disease processes resulting in the shift of balance from health
to disease. These processes are ubiquitous to most organs and
tissues in the human body and illustrative of the potential
applications of VOCs in clinical practice.10

Cancer is effectively uncontrolled cell growth with loss of
its regulatory check and repair mechanisms, typically caused
by genetic changes inducing aberrant cellular metabolism. As
these changes occur early in the disease process it opens possi-
bilities for early screening of large at risk populations. This is
supported by a pilot study showing promising detection rates
of colorectal cancer from urine samples (sens/spec; 88%/
60%)12. To expand this an international multi-centre trial for
early detection of lung cancer by FAIMS was recently initiated
(http://www.owlstonenanotech.com/lucid).

Tissue inflammation is a hallmark of most disease pro-
cesses. It follows a well-described molecular and chemical
pathway making it an attractive candidate for non-invasive
detection.13 Firstly this means treatment could be commenced
early thus halting further progression of inflammation as
shown for Coeliac disease19. Secondly, identifying VOCs
associated with inflammation can help to guide treatment
decision by monitoring inflammatory activity, possibly even
in the home.14 Other potential applications include phenotyp-
ing of patients to stratify them to receiving the correct treat-
ment as recently performed with FAIMS in patients with
asthma.13

Infections have been well studied since the days of Hippo-
crates, who realized that specific infections are associated with
a particular scent. VOCs related to infection originate both
from the metabolism of the pathogen (exogenous) and the
response of the host (local and systemic).14 This is underlined
by a study showing changes in bacterial populations could be
tracked by FAIMS by using VOC profile changes.9

This suggests VOCs can be used to diagnose infectious dis-
eases and monitor treatment response.16 This was recently
shown by FAIMS in Hepatic encephalopathy, which is a result
of toxins produced by gut bacteria not filtered effectively by
the liver. Furthermore, characterisation of microbial VOCs can
provide a means to rapidly identify microbial dysbiosis associ-
ated with disease – as was shown for C. difficile infection.15 In
health this organism is a commensal (i.e. lives within us
without causing harm). However, if this balance is disturbed
and a shift to less favourable bacteria occurs, then C. difficile
can become pathogenic.

Especially with infectious disease, the point of care nature
of the FAIMS device can be a key advantage. After proper
validation this could enable deployment not just in hospitals
or primary care but also in third world countries. Realizing
these goals is strongly supported by the appropriate technical
developments.
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Future developments

Likely future developments fall into a number of partially-over-
lapping categories, including improvements to the technology
and associated data processing, increased ease-of-use and
more extensive validation through larger clinical trials. Techni-
cal improvements will likely centre on increasing the strength
of the electric field used in the instrument, allowing clearer
separation of a wide range of compounds. At the same time,
improvements in electronics should allow even lower concen-
trations of compounds to be detected. Improved ease-of-use,
which will be necessary if FAIMS is to be a viable tool for wide-
spread medical use, will require the overall size of current
systems to be further reduced, a standardized sampling
method to be introduced, and data-processing facilities to be
incorporated into the instrument itself. It will also be necess-
ary to change the current ionization source, radioactive Ni-63,
to a non-radioactive alternative such as UV or corona dis-

charge. These changes are currently being implemented and
will allow for much larger clinical trials to take place. It will
only be by conducting such larger clinical trials that the effec-
tiveness of FAIMS for medical diagnostics will be properly
determined.

Conclusions

With an aging population and a significant increase in the
cost of healthcare, there is a strong demand to find simple,
quick and inexpensive methods to diagnose and monitor
human diseases. Non-invasive evaluation of metabolites by
analysis of the gas phase biomarkers that emanate from
human breath, urine, stool or sweat, shows considerable
promise. Thus far a wide variety of approaches ranging from
GC-MS to eNose have been evaluated. Field Asymmetric Ion
Mobility Spectrometry (FAIMS) has the ability to bridge this

Table 1 Published studies applying FAIMS in a medical context. Data analysis method is indicated in the sens/spec column

Cancers Numbers Details Samp. Sens./Spec.

Colorectal cancer12 N = 133; Case control study of 83 with confirmed
adenocarcinoma of the bowel

Urine 88/60a

83 colon
50 controls

Pelvic radiation disease16 N = 23 Longitudinal study – two groups Stool 90/90a

High and low gut related toxicity
following radiotherapy

Inflammation
Inflammatory N = 62; Case cohort study; Urine 74/88a

Bowel 48 with IBD Comparison of FAIMS and metal oxide
electronic nose

Disease (IBD)17 14 controls
Inflammatory N = 76; Case cohort matched study Breath 74/75a

Bowel 54 with IBD and 22 healthy controls
Disease (IBD)18

Coeliac19 N = 47; Case cohort matched study Urine 85/85b

27 with histological confirmation of
coeliac disease
20 controls with irritable bowel
syndrome

Bile acid diarrhoea20 N = 110 Case cohort study comparing two other
disease groups

Urine 85/90a

23 with bile acid diarrhoea
42 with ulcerative colitis and
45 symptomatic controls

Eosinophilic airway
inflammation21

N = 52; Case-control study using platform containing
multiple techniques including FAIMS

Breath Accuracy:
85%

27 with eosinophilia
Asthma/COPD24,25 N = 78 Pilot study with DMS Breath No reported

accuracy
Infection
Clostridium difficile22 N = 213 Case control involving a training, test and

validation
Stool 92/86c

−71 with C. diff positive by
microbiological analysis

Hepatic encephalopathy
(HE)23

N = 42; Case control study of 22 patients with various
degree of HE (due to liver failure) compared
with controls.

Breath 88/68b

22 with HE and 20 healthy controls

aWavelet transform, feature selection, then linear/fisher discriminant analysis. bWavelet transform, Wilcoxon rank-sum test for feature selection,
then sparse logistic regression. cWavelet transform, Wilcoxon rank-sum test for feature selection, then random forest classifier.
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gap between chemical analytical techniques and pattern reco-
gnition sensor based approaches because it combines high
sensitivity with a reproducible detector in a point of care tool.
We have shown the potential of FAIMS in a variety of medical
applications including cancer, inflammatory diseases and
infection. The coming years will see progress in terms of tech-
nical development and large clinical trials that will help ident-
ify how FAIMS can improve medical healthcare. Based on the
broad available evidence it has the opportunity to revolutionize
clinical pathways in primary and secondary care and even
bring these tools into the home.
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