

Fast separation of hydroxytestosterone isomers using chip-based FAIMS combined with mass spectrometry for high-throughput drug assays

<u>Robert W. Smith</u>; Dora santos, Yongmin Li, Weichao Chen, Kari Schlicht, Danielle E. Toutoungi, Colin S. Creaser, Sam Sperry

www.owlstonemedical.com

Acknowledgements

• Owlstone

Danielle Toutoungi Lauren Brown

• Vertex

Sam Sperry (now at eFFECTOR Therapeutics)Dora SantosYongman LiWeichao Chen

• Loughborough University

Colin Creaser

• Agilent Technologies

Kari Schlicht Vaughn Miller

Agilent Technologies

Drug Metabolism

- Elimination of a drug or its metabolites occurs by:
 - metabolism, usually by the liver or gut mucosa
 - excretion, usually by the kidneys and liver
- Hepatic elimination occurs primarily by the cytochrome P450 family (CYP) of enzymes
- The presence of other medications can alter metabolism significantly, which can lead to possible adverse side effects

As a result, investigation of drug-drug interactions is required as part of the approval process for a new drug

P450 inhibition (CYP3A4)

- Testosterone is one of the FDA's preferred substrates for measuring inhibition of the enzyme CYP3A4 (a standard measure of drug-drug interactions)
- 6β-hydroxytestosterone (6β-HT) is the major metabolite of testosterone through CYP3A4 action

• However some drug candidates promote formation of 2β -HT while inhibiting 6β -HT

The Challenge: determination of 6 β -HT concentration in the presence of 2 β -HT

• 2β-HT and 6β-HT are isobaric with no unique MRM transition to distinguish them

- LC-MS methods are currently used to separate these isomers
- A faster method for testing potential drug candidates is highly desirable
 - Online-SPE methods (e.g. RapidFire)

Effect of 2β-HT interference on inhibition measurements

Decreasing [Inh] →

P450 inhibition determined using change in 6β -HT response, but hidden by 2β -HT interference.

FAIMS basics

- FAIMS subjects ions to an alternating asymmetric waveform of low and high electric fields of opposite polarities, known as the dispersion field (DF)
- Ion mobility (K) has a non-linear behaviour in high electric fields

Experimental Approach - Instrumentation

• Owlstone UltraFAIMS system

100 µm

700 µm

- The small scale enables very fast separation, due to
 - short ion residence times <200µs (MS dependent)
 - low-voltage drive electronics
- Separation speed is compatible either with LC timescales or with online SPE sample introduction

Experimental Approach - Instrumentation

• For this study, an Owlstone UltraFAIMS system was used, interfaced with an Agilent 6230 TOF and an Agilent 6460 triple quad MS

• UltraFAIMS CF can be scanned to be produce a spectrum or held in static mode for better quantitation

Aim of study

- > Can FAIMS be used transmit only 6β -HT and enable use of high-throughput techniques?
 - To test the feasibility of using FAIMS with high-throughput techniques
 - Establish a separation
 - Evaluate compatibility
 - Assess quantitative performance

Initial optimization experiments

Direct infusion (individual standards of 2β -HT and 6β -HT, 5μ M) on ESI-FAIMS-TOF MS

• Best separation achieved in dry N_2 with 50°C drying gas and 250°C sheath gas

Validation of Separation with LC-FAIMS-MS/MS

Mixture of 2 β -HT and 6 β -HT (0.1 μ M) injected onto C18 column

Able to use FAIMS to select which of the metabolites are detected

Is this separation useful?

- Goal was to look at high-throughput workflows
- Given the separation capabilities, the options were to:
 - 1. Shorten LC separation using a quick gradient to remove salts prior to mass spectral detection and use FAIMS to separate the co-eluting isomers
 - 2. Lose LC completely, remove salts via SPE and use FAIMS to separate isomers prior to mass spectral analysis

• Our co-authors were interested in the latter option so pursued this area of study

Effect of temperature on RapidFire methods

The standard RapidFire method uses much higher source temperatures (300-350°C)

Source temperatures > 150°C advised for

- Sensitivity
- Robustness of method for routine use

Investigation of Increased Source Temperatures

Nitrogen drying gas temperature was increased to 150°C and sheath gas to 250°C on ESI-FAIMS-TOF MS

• Interference from other isomer is too high (> 5%)

FAIMS with Solvent Modifiers

The addition of solvent modifiers to affect separation is a common strategy with FAIMS

• A controlled evaporator system (Bronkhorst, UK) was used to deliver precise and accurate vapour concentrations into the drying gas

 With methanol at 0.1% and high DFs, we observed suppression and no improvement in separation Better response at lower DFs but metabolites not separated

FAIMS Optimization with Solvent Modifiers

To reduce suppression, modifiers with lower proton affinity were investigated using water on ESI-FAIMS-TOF MS

• Water at 1% gave sufficient separation

FAIMS Optimization with Solvent Modifiers

To reduce suppression, modifiers with lower proton affinity were investigated using water on ESI-FAIMS-TOF MS

- Water at 1% gave sufficient separation
- Increasing sheath gas to 350°C gave 3-fold increase in 6β-HT signal (<u>~7000 counts to</u> <u>~20000 counts</u>) (right)

FAIMS-QQQ Validation

Once ultraFAIMS was installed on a triple quad, the separation conditions were checked and improved

2β-HT interference over 6β-HT response

Loop injections of 6 β -HT (blue) and equimolar mixture of 6 β -HT and 2 β -HT (red) at 1 μ M, 0.2ml/min without FAIMS separation.

Large amount of interference from 2 β -HT compared to the response when only 6 β -HT present in sample.

Removal of 2β-HT interference from 6β-HT response

Loop injections of 6 β -HT (blue) and equimolar mixture of 6 β -HT and 2 β -HT (red) at 1 μ M, 0.2ml/min with FAIMS set to transmit 6 β -HT.

With FAIMS selection of 6 β -HT, the isobaric 2 β -HT interference has been almost entirely removed and is now comparable with the sample without 2 β -HT present.

Signal to noise improvements

Loop injections of 6 β -HT (no 2 β -HT in sample) at 1 μ M, with and without FAIMS separation.

As well as removing interference from the isomer, FAIMS is also improving signal to noise.

Quantitative Performance - 6β-HT Calibration curve

Conclusions and Further Work

- Future work will explore what sensitivity can be achieved with on-line SPE
- FAIMS can be used to separate 6β -HT from 2β -HT with 95% selectivity for 6β -HT
 - Addition of FAIMS would allow a faster LC method to be used
 - Operating conditions are compatible with high-throughput online SPE methods
- Good quantitative performance
 - \blacktriangleright LOQ <30ng/ml for 6 β -HT
 - \succ 6 β -HT signal-to-noise is doubled with FAIMS
 - **Solution** Good linearity $R^2 = 0.999$
- UltraFAIMS shows promise for use with high-throughput systems even when isomeric interference would otherwise prevent accurate determination of P450 inhibition

THANKYOU FOR YOUR ATTENTION!

Any questions?