Challenges in clinical validation studies

Professor George Hanna

Head of Department of Surgery and Cancer Imperial College London

JAMA Oncology | Original Investigation

Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis A Systematic Review and Pooled Analysis

George B. Hanna, FRCS, PhD; Piers R. Boshier, MRCS, PhD; Sheraz R. Markar, MRCS, PhD; Andrea Romano, PhD

Pooled Sensitivity 79% (0.77 – 0.81)

Figure 2. Forest Plot of Pooled Sensitivity Analysis

Source	Type of Cancer	Sensitivity (95% CI)	
Barash et al, ¹⁴ 2015	Breast	0.78 (0.67-0.86)	
Li et al, ¹⁵ 2014	Breast	0.68 (0.45-0.86)	
Phillips et al, 18 2003	Breast	0.88 (0.76-0.96)	
Phillips et al, 19 2006	Breast	0.93 (0.68-1.00)	
Guo et al, ²² 2015	Thyroid	1.00 (0.91-1.00)	
Altomare et al, ²⁷ 2013	Colorectal	0.86 (0.71-0.95)	
Kumar et al,32 2015	Gastroesophogeal	0.89 (0.80-0.95)	
Qin et al, 36 2010	Liver	0.87 (0.69-0.96)	
Bajtarevic et al, 38 2009	Lung	0.80 (0.74-0.85)	
Bousamra et al, ³⁹ 2014	Lung	0.28 (0.20-0.38)	■-
Fu et al, ⁴⁸ 2014	Lung	0.90 (0.82-0.95)	
Fuchs et al, ⁴⁹ 2010	Lung	0.75 (0.43-0.95)	
Gaspar et al, ⁵⁰ 2009	Lung	1.00 (0.81-1.00)	
Handa et al, ⁵¹ 2014	Lung	0.76 (0.62-0.87)	
Li et al, ⁵³ 2015	Lung	0.96 (0.90-0.99)	
Ligor et al, ⁵⁴ 2009	Lung	0.51 (0.38-0.63)	
Ligor et al. 55 2015	Lung	0.64 (0.55-0.73)	
Phillips et al, ⁶⁰ 2003	Lung	0.85 (0.74-0.93)	
Phillips et al. ⁶¹ 2007	Lung	0.85 (0.79-0.90)	
Phillips et al. 62 2008	Lung	0.84 (0.79-0.89)	
Poli et al. ⁶³ 2005	Lung	0.72 (0.55-0.86)	
Poli et al, ⁶⁴ 2010	Lung	0.90 (0.76-0.97)	
Sakamura et al,66 2017	Lung	0.95 (0.89-0.98)	
Schallschmidt et al,67 2016	Lung	1.00 (0.91-1.00)	
Schumer et al,68 2015	Lung	0.56 (0.48-0.64)	
Song et al, ⁷¹ 2010	Lung	0.95 (0.84-0.99)	
Wang et al, 73 2012	Lung	0.95 (0.89-0.99)	
Wehinger et al,74 2007	Lung	0.53 (0.28-0.77)	F
Pooled Sensitivity	-	0.79(0.77-0.81)	-
x ² ₁₇₇ =371.07; P<.001			
Inconsistency (12) = 92.7%			
			<u> </u>

Pooled Specificity 89% (0.88 – 0.90)

Figure 3. Forest Plot of Pooled Specificity Analysis

Source	Type of Cancer	Specificity (95% CI)					i	i
Barash et al, ¹⁴ 2015	Breast	0.61 (0.45-0.75)			H	-	4 İ	
Li et al, ¹⁵ 2014	Breast	0.92 (0.73-0.99)					\vdash	÷-I
Phillips et al, ¹⁸ 2003	Breast	0.74 (0.58-0.86)				\vdash		
Phillips et al, ¹⁹ 2006	Breast	0.86 (0.57-0.98)				H		÷ι
Guo et al, ²² 2015	Thyroid	1.00 (0.89-1.00)						ŧ—
Altomare et al, ²⁷ 2013	Colorectal	0.83 (0.68-0.93)				H	-	1
Kumar et al, ³² 2015	Gastroesophogeal	0.84 (0.76-0.90)					H∎H	
Qin et al, ³⁶ 2010	Liver	0.92 (0.78-0.98)					H	÷⊣
Bajtarevic et al, ³⁸ 2009	Liver	1.00 (0.99-1.00)						
Bousamra et al, ³⁹ 2014	Liver	1.00 (0.96-1.00)						I F
Fu et al, ⁴⁸ 2014	Liver	0.81 (0.71-0.88)					⊢∎∔	ŧ.
Fuchs et al, ⁴⁹ 2010	Liver	0.96 (0.79-1.00)					H	
Gaspar et al, ⁵⁰ 2009	Liver	1.00 (0.69-1.00)				ŀ		+
Handa et al, ⁵¹ 2014	Liver	1.00 (0.91-1.00)						1
Li et al, ⁵³ 2015	Liver	1.00 (0.96-1.00)						I F
Ligor et al, ⁵⁴ 2009	Liver	1.00 (0.89-1.00)						<u> </u>
Ligor et al, ⁵⁵ 2015	Liver	0.72 (0.67-0.77)				н	н	
Phillips et al, ⁶⁰ 2003	Liver	0.80 (0.65-0.91)				H		÷.
Phillips et al, ⁶¹ 2007	Lung	0.80 (0.74-0.85)					H	
Phillips et al, ⁶² 2008	Lung	0.81 (0.75-0.86)					H	
Poliet al, ⁶³ 2005	Lung	0.94 (0.87-0.97)					ļ	÷∎I
Poliet al, ⁶⁴ 2010	Lung	0.92 (0.79-0.98)					H	-
Sakamura et al, ⁶⁶ 2017	Lung	0.90 (0.73-0.98)					⊢ ∔	÷
Schallschmidt et al, ⁶⁷ 2016	Lung	1.00 (0.85-1.00)					H	+
Schumer et al, ⁶⁸ 2015	Lung	1.00 (0.98-1.00)						
Song et al, ⁷¹ 2010	Lung	0.85 (0.71-0.94)						÷.
Wang et al, ⁷³ 2012	Lung	0.96 (0.90-0.99)						⊢ ∎
Wehinger et al, ⁷⁴ 2007	Lung	0.99 (0.96-1.00)						H
Pooled Sensitivity		0.89 (0.88-0.90)					į	¢.
χ ₂₇ ² =406.66; P<.001								
Inconsistency (I ²)=93.4%								
-			0	0.2	0.4	0.6	0.8	
					Specificit	v (95% CI		

Lack of external validation and crucial factors consideration in clinical trials

Patients related factors

Imperial College

London

Medical Conditions

Smoking

Patients physiologic conditions

Diet

Exercise & rest time

Patients related factors

Smoking

Volatile Organic Compounds in Exhaled Breath in a Healthy Population: Effect of Tobacco Smoking

José Javier Jareño-Esteban^{a,??}, M. Ángeles Muñoz-Lucas^b, Belén Carrillo-Aranda^c, José Ángel Maldonado-Sanz^d, Ignacio de Granda-Orive^e, Antonio Aguilar-Ros^f, Concepción Civera-Tejuca^g, Carlos Gutiérrez-Ortega^b, Luis Miguel Callol-Sánchez^h, on behalf of the Study Group [◊]

Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers

Simonetta Capone¹ I Maria Tufariello² Angiola Forleo¹ I Valentina Longo¹ Lucia Giampetruzzi¹ Antonio Vincenzo Radogna¹ Flavio Casino¹ Pietro Siciliano¹

A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco cigarette and electronic cigarette smokers[‡]

Esther Marco, Joan O. Grimalt*

Patients related factors

Imperial College

London

Oral cleaning

Environment

Air VOC measurement in laboratory and clinical environment

IOP PUBLISHING J. Breath Res. 4 (2010) 031001 (6pp) JOURNAL OF BREATH RESEARCH doi:10.1088/1752-7155/4/3/031001

COMMUNICATION

Variation in the levels of volatile trace gases within three hospital environments: implications for clinical breath testing

P R Boshier¹, J R Cushnir¹, O H Priest¹, N Marczin² and G B Hanna^{1,3}

	Hospital ward $(n = 17)^{a}$		Outpatient clinic $(n = 17)$		Operating theatre $(n = 17)$			
	Median ^b	IQR ^c	Median	IQR	Median	IQR	P value ^d	
Acetone	17	[12-20]	11	[10-13]	5	[4-6]	<0.01	
Ethanol	2547	2149-2931]	424	[210-549]	89	[55-272]	< 0.01	
Propanol	158	[91-228]	236	[112-302]	3	[2-3]	< 0.01	
Hydrogen cyanide	1	[1-2]	1	[1-2]	1	<1-2]	0.61	
Isoprene	<2	[<2-2]	<2	[<2-4]	<2	<2-2]	0.20	
Acetic acid	44	[30-60]	44	[31-47]	21	[15-52]	0.11	
Ammonia	77	[62-83]	68	[66-82]	57	[52-63]	<0.01	

Need to evaluate target VOCs in the air in **clinical environments** where patients are sampled and **laboratory** where samples are analysed

Breath collection

Bags

Breath collection

Devices

Journal of Breath Research

PAPER

Optimisation of sampling parameters for standardised exhaled breath sampling

Sophie L F Doran (10), Andrea Romano and George B Hanna Department of Surgery and Cancer, Imperial College, London, United Kingdom

Table 4. VOCs elevated in exhaled breath collection system (ReCIVA and CASPER) compared to room air samples.

	Room air sample, peak area ^a		Mask sa		
VOC	Median	IQR	Median	IQR	Mann–Whitney <i>U</i> -test
Cyclopentane	12 051	11 153–13 941	138 112	80 145-367 963	<0.001 ^b
Disiloxane, hexamethyl-	10 420	9022-11 983	19 556 638	880 170-25 499 373	$< 0.001^{b}$
2-Oxa-1,3-disilacyclohexane, 1,1,3,3- tetramethyl-	14 338	12 755–16 536	68 011	24 101–1201 545	$< 0.001^{b}$
1,3-bis[(2Z)-Hex-2-en-1-yloxy]-1,1,3,3- tetramethyldisiloxane	20 755	17 645–29 569	343 046	165 585–1069 703	$< 0.001^{b}$
Trisiloxane, octamethyl-	13 430	10 753-17 306	1752 287	815 687-6127 763	$< 0.001^{b}$
Heptane, 2,2,4,6,6-pentamethyl-	17 660	13 278-25 093	367 240	166 605-677 080	$< 0.001^{b}$
Cyclotrisiloxane, hexamethyl-	20 804	18 057-25 539	53 059	41 728-116 568	$< 0.001^{b}$
2-Propenamide	15 866	12 790–17 465	39 700	27 199–52 062	$< 0.001^{b}$

Note. Mask sample: TD tube sample collected from ReCIVA and CASPER attached to the glass head.

* Mass area units IQR (inter-quartile range).

^b Denotes statistical significance at <0.05 level.

Breath collection

Devices

Breath collection

Standardisation of sampling parameters

Journal of Breath Research

PAPER

Optimisation of sampling parameters for standardised exhaled breath sampling

Sophie L F Doran 💿 , Andrea Romano and George B Hanna

Department of Surgery and Cancer, Imperial College, London, United Kingdom

- Breath fraction sampled
- Route for breath collection
- Sampling factors (volume and flow rate)
- Stability of target VOC and samples storage
- Human factor of collection devices

Breath collection

Hentanal

Decana

time (h)

Breath collection

TD tubes

Quality control system Presence of breath

Imperial College

London

Quality control using original biological matrix

Gas standards can be used as quality control but breath is a difficult matrix to replicate (composition, humidity..)

There is no pooled breath samples to analyse periodically as quality controls (gold standard in metabolomics)

Batch effect

Biomarker discovery

Direct Sampling

Imperial College

London

Chromatographic

PTR-ToF-MS

SIFT-MS

GC-FoF-MS

IT II	ntint
-	-

GCxGC-ToF-MS

- Limits of detection
- Limits of quantification
- Reproducibility
- Carry over effect

Model validation

- Selection of patients among the target population
- Appropriate control group

Imperial College

I ondor

- Appropriate sample size
- Patients should have a standard diagnostic test
- Tests performed before therapeutic intervention
- Knowledge about confounding factors in the target population

Validation studies

- External validation
- Multiple centres studies
- Multiple laboratory analysis
- Double blind operators (processing, analysis)
- Adaptive design for clinical trials

Imperial College High throughput system

- Targeted VOC methods for analysis
- Thermal desorption automated system
- Auto-deconvolution of GC-MS data analysis sing molecular networking of volatiles
- Quality management system

london

Quality control system

Imperial College

London

QC for each step of workflow in multi-centre clinical studies

Breath MAGIC

Breath Models for Assessment of GI Cancer in Primary Care

Is it **feasible and acceptable** in Primary Care to use breath testing in patients with gastrointestinal symptoms?

1002 patients

Selected Ion Flow Tube-MS Analysis of Headspace Vapor from Gastric Content for the Diagnosis of Gastro-Esophageal Cancer

Sacheen Kumar,^{†,‡} Juzheng Huang,^{†,‡} Julia R. Cushnir,[†] Patrik Španěl,[¶] David Smith,[§] and George B. Hanna^{*,†} *Anal. Chem.* 2012, 84, 9550–9557

Selected Ion Flow Tube Mass Spectrometry Analysis of Volatile Metabolites in Urine Headspace for the Profiling of Gastro-Esophageal Cancer

Juzheng Huang,^{†,||} Sacheen Kumar,^{†,||} Nima Abbassi-Ghadi,[†] Patrik Španěl,[‡] David Smith,[§] and George B. Hanna^{*,†}

Anal. Chem. 2013, 85, 3409-3416

Selected Ion Flow Tube Mass Spectrometry Analysis of Exhaled Breath for Volatile Organic Compound Profiling of Esophago-Gastric Cancer

Sacheen Kumar,^{†,‡} Juzheng Huang,^{†,‡} Nima Abbassi-Ghadi,[†] Patrik Španěl,[¶] David Smith,[§] and George B. Hanna^{*,†}

Anal. Chem. 2013, 85, 6121-6128

Mass-Spectrometry Analysis of Mixed-Breath, Isolated-Bronchial-Breath, and Gastric-Endoluminal-Air Volatile Fatty Acids in Esophagogastric Cancer

Mina E. Adam,^{†,§} Matyas Fehervari,^{†,§} Piers R. Boshier,[†] Sung-Tong Chin,[†] Geng-Ping Lin,[†] Andrea Romano,[†] Sacheen Kumar,^{†,‡} and George B. Hanna^{*,†}

Anal. Chem. 2019, 91, 3740-3746

Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma

Sacheen Kumar, MRCS,* Juzheng Huang, PhD,* Nima Abbassi-Ghadi, MRCS,* Hugh A. Mackenzie, MRCS,* Kirill A. Veselkov, PhD,* Jonathan M. Hoare, PhD, FRCP,† Laurence B. Lovat, PhD, FRCP,‡ Patrik Španěl, PhD,§ David Smith, PhD, FRS,¶ and George B. Hanna, PhD, FRCS*

(Ann Surg 2015;00:1-10)

1.0

Vector-based analysis

JAMA Oncology | Original Investigation

Assessment of a Noninvasive Exhaled Breath Test for the Diagnosis of Oesophagogastric Cancer

Sheraz R. Markar, PhD; Tom Wiggins, PhD; Stefan Antonowicz, PhD; Sung-Tong Chin, PhD; Andrea Romano, PhD; Konstantin Nikolic, PhD; Benjamin Evans, PhD; David Cunningham, PhD; Muntzer Mughal, MD; Jesper Lagergren, PhD; George B. Hanna, PhD

Table 2. Description of Cancer-Specific Factors

Tumor-Related Factor	Patients, No. (%)
Tumor location	
Gastric	72 (44.2)
Gastroesophageal junction	36 (22.1)
Oesophageal	55 (33.7)
Clinical T stage	
1	18 (11.0)
2	32 (19.6)
3	61 (37.4)
4	52 (31.9)
Clinical N stage	
0	57 (35.0)
1	58 (35.6)
2	22 (13.5)
3	26 (16.0)

Figure. ROC Curve for the 5-VOC Breath Model in the Diagnosis of Esophagogastric Cancer in the Multicenter Clinical Trial^a

Multicentre study

Imperial College

London

(GC-MS, molecular network analysis)

3 current oesophago-gastric multicentre trials

- Validity in Barrett's dysplasia early oesophageal cancer
- Developing breath test for squamous oesophageal cancer
- Augmenting VOC response to detect oesophagogastric cancer

Imperial College London Breath test assisted pathway

Acknowledgements

Dr Piers Boscher Dr Sach Kumar Dr Sheraz Markar **Dr Sophie Doran Dr Stefan Antonowicz Dr Tom Wiggins Dr Mina Adam Dr Sara Jamel** Dr Yan Mei Dr Bhamini Vadwana

Dr Ilaria Belluomo Dr Antonis Myridakis Dr Oscar Ayrton Dr Andrea Romano Dr Kristyna Sovova Dr Frank Huang Dr Tanzela Khalid