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Electronic noses (eNoses) are an emerging class of experimental diagnostic tools. They are based on the
detection of volatile organic compounds. Urine is used as sample medium in several publications but
neither the effect of chronic kidney disease (CKD) on the analysis nor the potential to detect CKD has been
explored. Materials & methods: We utilized an eNose based on field asymmetric ion mobility spectrometry
(FAIMS) technology to classify urine samples from CKD patients and controls. Results: We were able to
differentiate extremes of kidney function with an accuracy of 81.4%. Conclusion: In this preliminary study,
applying eNose technology we were able to distinguish the patients with impaired kidney function from
those with normal kidney function.

Lay abstract: Chronic kidney disease is a growing global problem. An interesting novelty in the disease
diagnostics are devices called electronic noses, which detect chemical compounds produced by the body
metabolism and thus form a specific smell print of which diseases or other processes of the body can be
detected. We analyzed urine of kidney patients with an electronic nose to discriminate those with a poor
kidney function from the ones with a relatively normal kidney function. This study indicates that chronic
kidney disease can in fact be smelled from urine samples.
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Chronic kidney disease (CKD) is a global health problem [1] and a significant risk factor for cardiovascular diseases,
the leading cause of death in developed countries [2]. CKD has effects on all the other organs of the body and affects
the treatment of comorbid diseases [2–4]. Early recognition of CKD allows more inexpensive and effective treatment,
therefore the detection in primary healthcare should be made easy and inexpensive, possibly with non-invasive
methods [5,6]. Estimation of glomerular filtration rate (GFR) is routinely used in the initial assessment of CKD [7].

While measuring GFR with inulin clearance is the gold standard, the complexity of the method makes it
unfeasible in clinical practice. Therefore, GFR is nowadays estimated using serum creatinine-based formulas,
commonly CKD-EPI equation with serum creatinine [4]. The equation is more accurate and less biased compared
with the formerly used modification of diet in renal disease study equation (MDRD) equation, especially at higher
GFR levels and at the time being, also closest to the inulin measured GFR [8]. However, creatinine-based estimations
can be confounded by muscle mass, diet and medication such as trimethoprim. In certain situations, the use of
another biomarker, cystatin C can be utilized [7]. Other substances, such as β2-microglobulin have also been under
research for substitution for creatinine [9]. All current methods require an invasive blood sample.

The concept of olfactory detection of diseases has been demonstrated by a multitude of dog studies [10]. Olfactory
sensation is caused by the adhesion of volatile organic compounds (VOC) to the olfactory epithelium. VOCs are
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a large group of compounds defined by their volatility at room pressure. In human body they are metabolites
that are emitted through sweat, saliva, breath, milk, feces and urine. In addition to the physiological changes in
metabolism, age, gender and diet, the human composition of VOCs is affected by diseases [11]. An infection, cancer
or a metabolic disease such as diabetes changes the smell of the body or the composition of VOCs emitted [12],
as can be seen in patients with advanced renal failure having a urine-like smell in their breath, caused by organic
amines [13]. Certain VOCs are typical for renal disease and uremia [14]. Pagonas et al. [15] were able to detect
substances appearance of which correlated with deteriorating renal function in the exhaled breath of patients with
a chronic renal dysfunction or end-stage renal disease. These VOCs form the ‘uremic fingerprint’. Mochalski et al.
identified a total of 60 VOCs in blood and breath of uremic dialysis patients, six of which were changed during
dialysis.

VOCs related to uremia or CKD have not been analyzed from urine. The traditional method for identifying
VOCs (in exhaled breath) has been gas chromatography–mass spectrometry (GC–MS). It has been used in several
studies concerning VOCs in disease diagnostics, but the problem with this technique lies in the fact that the
pathological metabolic pathways of the disease are often unknown. Therefore, the marker compounds are not
always easily connected to a specific disease [16]. Furthermore, GC–MS procedure is relatively expensive requiring
a vacuum and trained personnel to use it.

In an attempt to mimic biological olfaction, a device called electronic nose (eNose) have been developed.
Although the performance of dogs appears superior to the artificial devices [17], their performance depends on time-
consuming training. In addition, dogs get tired, hungry, lose interest and can be distracted by external factors [18].
Machines perform concordantly and predictably, and their maintenance usually requires fewer resources than living
creatures.

A typical eNose consists of a sampling system, an array of chemical gas sensors, an analog-digital convertor and
a computer, which has an algorithm for classification of the samples [19]. The function of eNoses is not based on
recognition of certain compounds or measuring their concentrations. They rely on the chemical fingerprint of the
smell of the sample, which is constructed of the varying concentrations and composition of the VOCs in a sample.
They recognize patterns and compare them to an algorithm in the previously constructed database [16,20–22].

Several studies applying eNoses in disease diagnostics have been published with promising results [17]. The use of
urine as a biological source of VOCs has been under research [23], yet to our knowledge, the only attempt to detect
CKD from urine is the study of Di Natale et al. [24]. They used an eNose based on quartz microbalance sensors to
analyze urine samples from children with kidney disease and hematuria matched with healthy controls same age.
Recently, in a proof-of-concept study [25], we applied an eNose with field asymmetric ion mobility spectrometry
(FAIMS) technology to diagnose ovarian cancer from urine samples. Kidney function has not been taken into
consideration in most eNose studies, yet we hypothesize that it is a considerable confounding factor.

In the current study we used an eNose with FAIMS technology to analyze urine samples and stratify them
according to the CKD epidemiology collaboration creatinine equation (CKD-EPI) classification (GFR class). The
aim of the study was to find out if impaired kidney function can be detected from a urine sample based on
the detection of VOCs.

Materials & methods
Patient population & samples
In this study, we used urine samples provided by patients participating in studies of CKD in relation to atherosclerosis
and its complications in 1997–2000 in Tampere University Hospital and Tampere Municipal Hospital [26,27]. The
cohort of the current study consisted of predialysis patients with chronic renal failure aged under 70 years and a
matching (age, sex and BMI) control group from orthopedic outpatient clinic patients with no previously known
chronic illnesses, representing normal creatinine levels and no albuminuria. Both groups were highly representative
of their patient population in the area. All the participants had given a previous informed written consent for
the use of their urine samples for biochemical research. The study was approved by the ethical committee of the
University of Tampere.

At the time of the original study, the patients provided a 24-h urine collection sample and a 12-h overnight
fasting venous blood sample was also taken the same morning that the urine collection was delivered, from which
the serum creatinine levels were measured in a laboratory setting. Urine protein was measured from the 24-h sample
and albuminuria was tested with a dipstick using the standard method of Tampere University Hospital laboratory
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Table 1. The patient demographics in accordance with the glomerular filtration rate class.
Characteristic GFRc 1 GFRc 2 GFRc 3 GFRc 4 GFRc 5 Total

Age, mean (range) 49.3 (29–69) 56.7 (32–69) 50.2 (33–66) 53.6 (29–68) 57.8 (34–69) 54.4 (29–69)

Men 11 (73%) 16 (59%) 8 (89%) 16 (67%) 9 (45%) 60 (63%)

DM 0 (0%) 1 (4%) 1 (11%) 7 (29%) 7 (35%) 16 (17%)

HA 0 (0%) 0 (0%) 8 (89%) 23 (96%) 19 (95%) 50 (53%)

Smoking 7 (47%) 4 (15%) 3 (33%) 5 (21%) 3 (15%) 22 (23%)

Positive urine dipstick test for albumin – 1 (4%) 6 (67%) 14 (58%) 13 (65%) 34 (36%)

≥0.45 g protein in 24-h urine sample – 2 (7%) 7 (78%) 15 (63%) 17 (85%) 41 (43%)

Etiology of kidney disease:

Diabetic nephropathy – – 1 (11%) 6 (25%) 6 (30%) 13 (14%)

Chronic glomerulo-nephritis – 1 (4%) 3 (33%) 3 (13%) 2 (10%) 9 (10%)

Polycystic kidney disease – – – 1 (4%) 4 (20%) 5 (5%)

Hypertensive nephropathy – – 2 (22%) 2 (8%) 1 (5%) 5 (5%)

Chronic pyelonephritis – – – 2 (8%) 2 (10%) 4 (4%)

Amyloidosis – – – 1 (4%) – 1 (1%)

Other/unknown – – 3 (33%) 9 (38%) 5 (25%) 17 (18%)

Total 15 27 9 24 20 95

DM: Diabetes mellitus; GFRc: Glomerular filtration rate class; HA: Hypertension.

testing. An amount of 20 ml of the urine was then stored in -70◦C in plastic test tubes without preservatives for
future use. These samples were not thawed before the current study, which took place in 2017.

In the current study, we focused on the predialysis patients and controls of the original study cohort. The patient
population consisted of 108 patients, 13 of which were excluded from the study due to missing data, leaving a
study population of 95 patients. The study population was stratified into five classes according to GFR (later: GFR
classes 1–5). Patient demographics, including the etiology of kidney disease, are shown in Table 1. Due to the pilot
nature of the study, the sample size was maximized based on feasibility, not statistical power based on prespecified
differences.

The stored urine samples were defrosted overnight, prior to the FAIMS analysis, in +4◦C and then mixed using
vortex. An amount of 5 ml of each liquid urine sample was pipetted into a glass vial (Fisherbrand, Thermo Fisher
Scientific, Vantaa, Finland) sized 24 or 28 ml for analysis. All glass vials were handled with clean nitrile gloves to
prevent volatile contamination from skin. The samples were kept in room temperature for an average of 169 min
(variation 104–219 min) before analysis.

GFR classes
A corresponding GFR value for each patient was calculated using the CKD-EPI formula [28] with the provided
information of serum creatinine value, age and sex. After this the patients were stratified in GFR classes 1–5 (later:
GFRc 1–5) according to their renal function (Table 1). The stratification was based on the clinical classification of
CKD [3] as follows: GFR class 1 (GFRc 1) represents patients with eGFR >90 ml/min per 173m2 (with no known
kidney disease or albuminuria), GFRc two patients with eGFR 60–89, GFRc three patients with eGFR 30–59,
GFRc four patients with eGFR 15–29 and GFRc five patients with eGFR <15. GFR class 3 was originally to be
divided in subgroups 3a and 3b, but after the exclusions, there was only one patient left in the group 3a, so 3a and
3b were merged into GFRc 3. Additionally, the presence of protein in the 24-h urine sample and the results for a
positive albumin dipstick test for each GFR class are also presented in the Table 1 FAIMS analysis.

We utilized an Owlstone Lonestar FAIMS chemical analyzer employing ATLAS headspace sampling system
(Owlstone Ltd, Cambridge, UK) to analyze the urine samples. FAIMS is an ion mobility method based on
accessing the physicochemical properties of VOCs. The liquid sample (urine) is heated to achieve a gaseous
headspace which is subsequently ionized. The formed ions are referred to the sensor by carrier gas flow. In the
sensor, the sample flow is exposed to an alternating electrical dispersion field and compensation voltage. Due to
the alternating current and collision of ions with the molecules of the carrier gas, the sample ions are separated
according to their ion mobility and mass. The response of the ions colliding the detector as a function of the
dispersion field provides a chemical fingerprint (Figure 1), which contains information about all the compounds
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Figure 1. The field asymmetric ion mobility spectrometry response of a typical urine sample of glomerular filtration
rate class 1. Field asymmetric ion mobility spectrometry generates separate response for positive ions (left) and
negative ions (right).

present in a sample. The analysis takes place in room temperature and atmospheric pressure [29].
We conducted three consecutive scans from each sample and scanned approximately 20 samples per hour, 20–60

samples per day, on four separate days. The analyzing time for each sample was approximately 2 min. Between the
urine samples the FAIMS system was cleaned with sterile water (5 ml). The cleaning was performed in a similar
way than the analyzing of urine samples. We scanned a minimum of three scans with the water and changed for
fresh water after ten urine samples.

The settings of the FAIMS scanning were provided by the manufacturer. The more detailed scan procedure is
described in another paper [25], briefly: the gas (air) flow rate over the sample was 500 ml/min and this was mixed
with clean air flow of 2000 ml/min, which makes a total flow of 2500 ml/min for the sensor. Dispersion field from
0–90% was scanned in 51 steps and compensation voltage from -6 to +6 V was scanned in 512 steps. The scans
were saved on Lonestar hard drive and a transportable USB drive for statistical analysis.

Statistical analysis
During measurement, for each matrix, we used variations consisting of 512 different compensation voltages and
51 different alternating current values and observed the amount of current (ions) reaching the detector plate. This
was done for both positive and negative ions separately. Therefore, the original smell prints consisted of 52,224
measurement points per matrix of a sample. From each urine sample, the third-measured matrix data was used for
further analysis. We chose the third matrix for the mathematical analysis in order to maximize the time the sample
has to vaporize and generate a stronger signal. After measurements, the original resolution of 512 × 51 measuring
points was condensed by averaging to 64 × 25, to significantly speed up the analysis time. Both, the negative
and the positive responses were used and the L2 norm of each combined response was scaled to one. The analysis
was conducted with Matlab R2020a (Mathworks). We used linear discriminant analysis to create classification
parameters. To avoid overfitting, the results were cross validated using leave-one-out cross validation [30].

The ability of the FAIMS eNose to detect and classify chronic renal disease was tested by comparing the groups
of patients with a different CKD-EPI classification. The patients in the groups GFRc 4–5 and the patients in the
GFRc 5 were compared with GFRc 1 (Table 2). Other combinations of testing were also performed, including
comparing GFRc 4–5 to GFRc 1–2 and comparing GFRc 4–5 to GFRc 1–3. Furthermore, we compared GFRc
2–5 to GFRc 1. Stratification of the whole cohort in five classes was also attempted.

Same classifications were calculated for patients by utilizing 0.45 g or more of protein per day in 24-h urine as
the threshold for positive finding and positive finding for albumin in dipstick urine test.
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Table 2. Discrimination rates in comparison of different chronic kidney disease groups.
Parameters GFRc 5 vs 1 GFRc 2–5 vs 1 GFRc 4–5 vs 1 GFRc 4–5 vs 1-2 GFRc 4–5 vs 1-3

FAIMS

Accuracy 74.3% 75.8% 81.4% 69.8% 64.2%

Sensitivity 85.0% 94.4% 97.7% 68.2% 59.1%

Specificity 60.0% 20.8% 33.3% 71.4% 68.6%

24-h urine protein

Accuracy 91.4% 62.8% 84.9% 88.6% 82.9%

Sensitivity 95.0% 58.2% 84.2% 84.2% 86.7%

Specificity 86.7% 86.7% 86.7% 92.7% 80.0%

Dipstick urine albumin

Accuracy 80.0% 62.8% 71.2% 78.8% 74.5%

Sensitivity 65.0% 58.2% 61.4% 61.4% 61.4%

Specificity 100.0% 86.7% 100.0% 97.6% 86.0%

GFRc: Glomerular filtration rate class; FAIMS: Field asymmetric waveform ion mobility spectrometry.

We tested the groups for the main variables possibly affecting both the urine VOC status and CKD, including
diabetes, arterial hypertension, smoking and gender. A Pearson’s chi-square test was performed for the statistical
dependency of the variables. In the original data, hypertension was diagnosed when a study subject had received
medical treatment for hypertension or had a systolic blood pressure ≥160 mmHg or diastolic blood pressure ≥95
mmHg at the time of the examination (the urine sample collection). Respectively, diabetes was diagnosed when a
previous or current 12-h fasting blood glucose level was 6.7 mmol/l or greater.

Results
The analysis was performed for 95 patients. The patient demographics and GFR estimates are presented in Table 1.
Concerning the main variables, the GFR classes differed statistically significantly from each other in the incidence of
diabetes (p = 0.018) and hypertension (p = 0.000), while no difference was found in history of smoking (p = 0.360)
or gender (p = 0.173).

The ability to correctly classify patients was highest in comparison of the extremities: when GFRc 5 was compared
with GFRc 1 (outcome of the test being GFRc 5) or even more accurately when GFRc 4–5 was compared with
GFRc 1 (outcome being GFRc 4–5), which included more cohort. This resulted in a sensitivity of 97.7%, a
specificity of 33.3% and an accuracy of 81.4%. When five-class classification to five GFR classes was attempted, the
classification accuracy of 30.5% only slightly exceeded that of chance alone (28.4%). The sensitivity, specificity and
accuracy of each testing set is demonstrated in Table 2. Due to significant association of diabetes with CKD, the
analyses were repeated after exclusion of patients with diabetes. After exclusion of patients with diabetes the results
remained essentially the same. For example, with diabetic patients excluded and distinguishing between GFRc 4–5
and GFRc 1–2, a correct classification rate of 69.6% was achieved with a sensitivity of 76.7% and a specificity of
61.5%.

The sensitivity of 24-h urine protein was 95.0%, with specificity of 86.7% and accuracy of 91.4% for GFRc 5
versus GFRc 1. The results for dipstick urine albumin were 65.0, 100.0 and 80.0% accordingly. The sensitivity,
specificity and accuracy of each testing set is demonstrated in Table 2.

Through all samples, Pearson’s correlation coefficients between signal intensity and kidney function were also
calculated for the spectra. With this information, the linear dependence of each point in the spectra with kidney
function could then be measured. In the positive channel, therefore, the higher the linear correlation of a given
point, the more likely it is to gain higher values of signal intensity as GFR of the sample impairs. In the negative
channel, as signal intensity is measured to negative direction, the method is interpreted in the reverse manner. In
both channels, the extreme measured correlations were approximately ±0.4, which show moderate linear correlation
between the particular regions of spectra and kidney function (Figure 2).

Discussion
Applying an eNose with FAIMS technology, we were able to distinguish patients with a impaired kidney function
from controls. The stratification of all patients in five groups depending on the eGFR value could not be done
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Figure 2. The correlation between the field asymmetric waveform ion mobility spectrometry response and the
glomerular filtration rate class. The positive ion response is on the left and negative ion response is on the right.
Yellow areas are more prominent in kidney failure and blue areas are less prominent in kidney failure.

reliably. The result is not surprising considering the nature of the disease: renal function impairment is a continuum
characterized by a long asymptomatic phase and therefore a clear-cut classification is always artificial. Nonetheless,
this study shows that chronic renal disease has a significant impact on urine VOC composition. This is the first study
conducted from CKD point of view using urine samples and an eNose technology and underlines the importance
of addressing renal function when analyzing urine gaseous headspace.

To our knowledge, the only study with urine VOCs related to CKD was focusing on pediatric hematuria [24]. The
results of that study cannot be applied to adults, who rarely present with hematuria as the key symptom of CKD,
since vast majority of adult CKD is caused by diabetes and hypertension. The study population size was limited
and no cross-validation was used. Because of these limitations, the reference to this study should be considered
anecdotal.

A limited number of studies focusing on the VOCs of chronic renal disease patients have been carried out using
different methods and sample media compared with ours, but resulting in similar outcomes. Voss et al. [31] were
able to differentiate all healthy subjects from those with a renal failure using an eNose with conducting metal
oxide sensors attached to a patient’s leg. Like us, they were able to differentiate between the extremities and had
a correct classification of 95.2% of patients with end-stage renal dysfunction and less severe chronic renal failure.
Lin et al. [32] applied an eNose constructed of six piezoelectric quartz crystal arrays to mimic the olfactory receptor
protein to detect uremia and CKD in breath samples. They were able to differentiate these with a high accuracy
of 86.78%. In addition, the differentiation of the healthy and sick patients was done 100% correctly. Also, in an
animal model, Haick et al. [33] were able to identify rats with bilateral nephrectomy from the healthy individuals
by 27 VOCs appearing in the breath of these rats. None of the mentioned studies, however, used urine as the
biological source of VOCs.

Interestingly, the areas of the spectrum that correlate with kidney function in the FAIMS spectrum are very
distinct, as demonstrated in Figure 2, although the correlation of the features is modest. The structure of the
FAIMS spectrum consists of reactant ion peak from water and residual ion peak from molecules that the sensor
is unable to discriminate. In analysis of air the molecules of interest are typically between these two peaks [34].
Since our analysis was explorative in nature, no standards were used to attempt explicit identification of molecules.
The features highlighted by Pearson’s correlation in Figure 2 seem to correspond the peaks of water (right image,
strong yellow on the left) and ammonium (right image, blue on the extreme left). The positive correlation of CKD
and water content is supported by impaired ability to concentrate urine [35] and decreasing urine concentrations
of ammonium are connected to the development of metabolic acidosis and poorer outcomes as kidney failure
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progresses [36]. We therefore speculate that the ability of FAIMS to discriminate GFR classes is mostly explained by
these two molecules.

Both breath and urine are alluring sources of VOCs, since their collection is noninvasive. However, breath
analysis seems to be prone to confounding factors and is more challenging to obtain in a standardized manner. Age,
gender and BMI of the individual as well as smoking habits have been shown to influence breath VOC profiles [37].
Furthermore, distinguishing exogenous contaminants from endogenous products can be challenging [13] and, for
example, hospital room air affects uremic breath patterns notably [14]. The patients in the Pagonas et al. study [15]

had to refrain from eating, drinking or brushing their teeth for 2 h prior to the breath analysis.
However, urine sample collection is less prone to environmental contaminants and does not require standardized

settings. Urine does not take on a gaseous form until it is heated up inside the headspace sampler and thus will not
be as susceptible to contamination. Furthermore, giving a urine sample seems to be preferable to a blood sample
and patients feel it is easier to give at home [38]. The compliance of the patient for a biological sample might be
better when using urine instead of blood.

Our study involved a relatively large patient cohort and good demographic information of the patients, which
was collected with a structured interview and tests by the time the patients were recruited. The recruited CKD
population contains a relatively wide range of etiologies. The urine analysis with FAIMS was done in a blinded
manner and in a random order, which significantly reduces the risk of bias. The CKD status of the patients and
healthy controls remained unknown until the analysis was completed. We used cross-validation (leave-one-out
cross-validation) for our mathematical analysis to minimize bias from overfitting.

Even though urine is a stable medium for VOC analysis, the analytic window of the time for analysis after the
initial collection might be limited. The results of Esfahani et al. [39] study indicate that the VOC concentration
in urine samples decreases over time. The storage time of our samples was long, which may decrease their VOC
output and thus the difference is likely to be underestimated rather than overestimated. However, all the analyzed
urine samples had been stored for nearly the same time, so that the variation between them was minor. Our study
could be affected by the imperfect gold standard bias, aka copper standard bias, to some degree [40]. The ‘correct’
classification of our index test (the Lonestar analysis) was based on a calculated GFR value with the use of measured
serum creatinine, which itself has potential biases. Thus, our gold standard was imperfect. However, in that case,
both sensitivity and specificity of our index test would be lowered, since it is independent of the gold standard
test. We also compared the performance of FAIMS to the performance of dipstick albumin test and 24-h urine
albumin collection. Obviously, the performance of 24-h urine albumin collection is superior to both dipstick and
FAIMS analysis. The accuracy of FAIMS is roughly par with dipstick albumin but in contrast to the low sensitivity
of dipstick albumin, FAIMS is more sensitive but has poorer specificity.

The patients in different GFR classes differed from each other with the incidence of hypertension and diabetes,
which is logical, since they are diseases that cause kidney dysfunction. Since diabetes results in significant metabolic
alterations reflected in urine other than just presence of glucose and proteins alone [41,42], we performed additional
analyses to exclude the possibility that the classification of CKD is rather due to diabetes-related factors and
confirmed that the results are not related with diabetes. Additional limitation of our study is the lack of data on
hematuria. Also, our study is limited to adult population.

Screening of impaired kidney function may allow for prevention of the development of severe renal insufficiency
requiring dialysis, especially since chronic kidney disease is asymptomatic for a long time. However, screening is
not routinely done. In 2012 the US Preventive Services Task Force announced that the screening for lowered
eGFR or albuminuria of asymptomatic adults without a diagnosed CKD (ruling out the persons with diabetes or
hypertension) is ineffective considering the costs and harm caused by the screening [43]. With the present clinical
methods, screening for CKD is cost-effective only in high-risk populations (persons with diabetes) [44], and most
guidelines therefore recommend screening only in these groups [7].

Conclusion
Despite the limitations of our study, we were the first to show that FAIMS eNose technology is capable of
differentiating the extremes of kidney function from urine samples and that the kidney function is reflected in the
urinary VOC profile. This is likely explained by changes in ammonium and water content caused by CKD. Our
study provides valuable information for other FAIMS studies, since CKD and impaired kidney function can be
confounding factors when trying to diagnose other diseases. Since FAIMS analysis is not limited to single analyte,
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single noninvasive urine test could potentially be used to detect several different stages of illnesses or conditions at
the same time.

Future perspective
eNoses have been in research use for over 2 decades and are getting closer to clinical use. They will likely compete
with mass spectrometry in applications where affordable qualitative analysis is more convenient than expensive
quantitative analysis.

The challenge in eNose research has been the wide variation in methodology. We demonstrated the significant
effect of kidney function to urinary headspace and predict that in the future, normalization of sensor response to
kidney function will be expected from all eNose studies that use urine as sample medium.

A topic of future studies: to establish, with a larger cohort, whether different kidney diseases have specific VOC
profiles and whether the true differentiation of CKD could be done by utilizing an eNose.

Summary points

• Impairment of kidney function can be detected from the urine headspace utilizing field asymmetric ion mobility
spectrometry technology.

• We analyzed the urine of 95 patients with varying kidney function using Owlstone Lonestar field asymmetric ion
mobility spectrometry sensor.

• The discrimination of kidney function from urine headspace has not been previously attempted.
• Spectrums were analyzed in order to discriminate different kindey function groups and to see features that

correlate with kidney function.
• Discrimination rate improved as the difference between the kidney function of the groups increased.
• Changes in ammonia and water content are speculated to be the reason for different smellprints.
• Kidney function has not been considered in most electronic nose studies and may be a significant confounder.
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