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Figure 1: (a) Photograph of FAIMS-MS interface, (b) schematic diagram of the interface of the ion 

source region of the TOF-MS and the miniaturised chip-based FAIMS device  
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• Higher-ordered structures based on the self-assembly of simpler molecules are of interest in a variety 

of fields including structural biology, nanotechnology and supramolecular chemistry.  

 

• Modified purine bases such as 3-methylxanthine (TMX) have been found to self-assemble in the 

presence of alkali metals and ammonium cations in the gas phase and in solution.  

 

• Miniaturised high-field asymmetric waveform ion mobility spectrometry (FAIMS) and  travelling wave 

drift tube ion mobility spectrometry (IMS), both combined with mass spectrometry, have been used to 

investigate self-assembling, non-covalent complexes of TMX in the gas phase.  

 

• Travelling wave IMS (TWIMS) analysis has been used to determine collision cross sections (CCS) of 

selected TMX complexes. 

 

Sample Preparation 

• 3-Methylxanthine was prepared as a 0.5 mM solution in 60:40 methanol:water with 1 mM ammonium  

acetate, or in 60:40 methanol:water with 1 mM sodium hydroxide, to promote the formation of TMX 

clusters with Na+, and to enable the detection of higher-ordered clustered TMX structures.  

 

 

FAIMS-MS Parameters 

• TMX solutions were analysed using an Agilent 6230 TOF (Agilent Technologies) with a modified Jet 

Stream ESI source, combined with a prototype miniaturised chip-based FAIMS device (Owlstone Ltd., 

Cambridge), located in front of the mass spectrometer inlet capillary (Fig. 1). The FAIMS device 

consists of multiple planar electrode channels each with a 100 µm gap and an electrode length of 700 

µm.  

 

• The MS experimental conditions in positive ion mode were: drying gas: 8 L/min at 150 °C; sheath gas: 

10 L/min at 200 °C; nebuliser gas: 30 psig; capillary voltage: 3.5 kV; nozzle voltage: 2 kV; fragmentor 

voltage: 150 – 250 V; and a sample flow rate of 10 µL/min using a syringe pump. The optimum FAIMS 

conditions for the selective transmission of the different TMX clusters, singly, doubly and multiply 

charged species, were determined by conducting a compensation field (CF) sweep from -2 to 5 Td at 

a rate of 0.5 Td/sec, for dispersion fields (DF) in the range 194 to 323 Td.  

 

 

IMS Parameters 

• TMX solutions were analysed using a Waters Synapt HDMS spectrometer (Waters Corporation) fitted  

with a TWIMS drift cell, operated in IM-MS, IM-MS and IM-MS/MS modes. ESI conditions were 

capillary voltage: 3.0 kV; sampling cone: 20 L/hr; extraction cone: 4 L/hr; source temperature: 120 °C; 

desolvation temperature: 200 °C; desolvation gas flow: 400 L/hr. TWIMS analysis was performed with 

the  travelling wave height at 7.5 – 12 V and 8 – 14 V with the N2 drift gas set to 24 mL/min and the 

pusher interval set to 64 µs. The CCS of selected TMX clusters were determined using peptide 

compounds of known CCS measured in helium.  

 

IMS CCS 8-

14 V 20 % 

attenuated 

TMX complex m/z CCS (Å2) 

[TMX+Na]+ 189.1 80 

[TMX4+Na]+ 687.2 181 

[TMX8+Na]+ 1351.4 259 

[TMX12+2Na-H]+ 2037.6 338 

• 3-Methylxanthine (TMX) is shown to self-assemble in the gas phase to form clusters around a 

stabilising cation (Fig. 2), which have been analysed using ESI-MS and ESI-FAIMS-MS. 

Supramolecular structures of TMX, where TMX forms tetrameric non-covalently bound structures 

around a NH4
+, Na+ and K+ cation have all been observed (Fig. 3).  Clustering of TMX from single 

tetrameric complexes to higher-ordered quadruplex complexes of up to six TMX tetramers has 

been observed using FAIMS-MS in the presence of Na+ (Table 1). The focus of this preliminary 

study is on these monomeric and singly charged tetrameric complexes of TMX with sodium.  

Cat+ 

Figure  2: Structure of 3-methylxanthine 

non-covalently bound tetramer 

([TMX4+Cat]+) with stabilising cation 

observed as NH4
+, Na+ or K+.  
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Figure 3: Mass spectra (no FAIMS) showing observed single 

tetrameric TMX species prepared in 1 mM 

• FAIMS-MS has been used for the analysis of the non-covalent complexes formed by TMX. The 

singly charged TMXn (n = 4-12) complexes show maximum FAIMS transmission at different CF 

values, with the optimum CF decreasing as the size of the cluster increases (Fig. 4).  

 

• The signal to noise ratio of low abundance multiply charged species (Fig. 5) can be improved using 

FAIMS-selection prior to MS analysis.  

 

• Separation of TMX complexes with different charge states can be achieved (Fig. 6) using FAIMS-

selection of the appropriate charge state (Fig. 6 (d)). 

 

• The hyphenation of FAIMS-MS and IMS-MS has been used for the 

analysis of TMX complexes.  

• This preliminary study into the structural analysis of TMX complexes  

shows a complexity of non-covalently clustered structures.  

 

• FAIMS-selection has been used for the separation of overlapping 

charge states of TMX complexes. 

• Increased signal to noise ratio is observed for higher-order TMX 

complexes using FAIMS-MS. 

• TMX singly charged complexes formed in the presence of sodium 

show different CF values for maximum ion transmission.  

• TWIMS-MS analysis has been used to determine the CCS of 

selected singly charged TMX complexes. 

• Tandem MS combined with IMS has been used to obtain ion 

mobility spectra of TMX fragments.  

TMX Complex m/z 

[TMX+Na]+ 189.04 

[TMX4+Na]+ 687.18 

[TMX8+Na]+ 1351.38 

[TMX12+2Na-H]+ 2037.55 

Table 1: TMX monomer and singly 

charged tetrameric complexes  

Table 2: Experimentally measured CCS of [TMX+Na]+  
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Figure 8: Tandem MS of [TMX8+Na]+: (a) ion mobility 

profiles (wave height 8-14 V with trap CE at 14 V); (b) 

product ion mass spectrum showing TMX8 fragments. 
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• IMS-MS analysis of the sodium 

doped TMX complexes was used 

to determine the CCS of the singly 

charged tetrameric complexes. 

 

• Experimentally measured CCS 

values (Fig. 7) were determined 

using peptide standards of known 

CCS (Table 2). 

• IMS analysis combined with tandem MS (Fig. 8) 

allowed for further structural analysis of the 

fragmentation of these tetrameric TMX complexes in 

the gas phase. 
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Figure 7: Ion mobility spectra 

of [TMX+Na]+ singly charged 

tetrameric complexes 

Figure 5: Mass spectra of TMX complexes (a) no FAIMS selection (singly 

charged TMX species labelled), (b) [insert] doubly charged TMX20 species 

with Na+ with FAIMS-selection (DF = 259 Td, CF = 1.2 Td), which doubles 

the signal to noise ratio for these species 
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Figure 4: SIRs for a CF scan at 

DF = 323 Td for singly charged 

tetrameric TMX complexes 
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Figure 6: Separation of TMX (+Na+) complexes with different charge states using FAIMS (DF = 323 Td); (a) no FAIMS, 

(b) FAIMS-selection of the singly charged species (CF = 1.7 Td) and (c) FAIMS selection of the doubly charged 

species (CF = 2.85 Td); (d) FAIMS CF scan at DF = 323 Td (selected ion responses). 
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