Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS

Kayleigh Arthur K.Arthur@lboro.ac.uk

Introduction

- LC-MS is a highly used technique for untargeted profiling analyses
- Incorporation of scanning ion mobility with LC-MS
- Why choose FAIMS over IMS (DT or TW)?
- Fast FAIMS scanning achievable with miniaturised FAIMS device
- Full scan FAIMS within time of a UHPLC peak
- Approach applicable to a range of mass spectrometers

Untargeted profiling – IMS

An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry*

Emma L. Harry^a, Daniel J. Weston^b, Anthony W.T. Bristow^c, Ian D. Wilson^d, Colin S. Creaser^{a,*}

OWLSTONE

research articles

Toward Plasma Proteome Profiling with Ion Mobility-Mass Spectrometry

Stephen J. Valentine,[†] Manolo D. Plasencia,[‡] Xiaoyun Liu,[‡] Meera Krishnan,^{‡,§} Stephen Naylor,^{||} Harold R. Udseth,[⊥] Richard D. Smith,[⊥] and David E. Clemmer^{*,‡}

Valentine et al, J. Proteome. Res., 2006, 5, 2977-2984

Loughborough University

Untargeted profiling – FAIMS

Nontarget Analysis of Urine by Electrospray Ionization-High Field Asymmetric Waveform Ion Mobility-Tandem Mass Spectrometry

Daniel G. Beach and Wojciech Gabryelski*

Jesse D. Canterbury, Xianhua Yi, Michael R. Hoopmann, and Michael J. MacCoss*

LC run time = 120 mins FAIMS scan time = 2-3 s

Beach et al, *Anal. Chem.*, **2011**, *83*, 9107-9113 Canterbury et al, *Anal Chem*, **2008**, *80*, 6888-6897 Creese et al, *J Am Soc Mass Spectrom*, **2013**, *24*, 431-443

© The Author(s), 2013. This article is published with open access at Springerlink.com J. Am. Soc. Mass Spectrom. (2013) 24:431–443 DOI: 10.1007/s13361-012-0544-2

RESEARCH ARTICLE

Probing the Complementarity of FAIMS and Strong Cation Exchange Chromatography in Shotgun Proteomics

Andrew J. Creese,¹ Neil J. Shimwell,^{1,2} Katherine P. B. Larkins,¹ John K. Heath,¹ Helen J. Cooper¹

Compensation Field (Td)

FAIMS vs TWIMS

- Direct comparison
- FAIMS covers a greater proportion of the analytical space
- FAIMS covers across the CF range at all *m/z*
- TWIMS shows a correlation between *m/z* and bin number
 - Bin number increases as m/z increases

Loughborough

Miniaturised FAIMS with LC-MS

How? FAIMS/LC-MS Synchronisation

LC-FAIMS-MS Modes of Operation

Application to Biological Matrices

FAIMS-MS

Optimisation of FAIMS DF and CF

Targeted LC-FAIMS-MS Isobaric separation, reduction in chemical noise, in-source CID

Untargeted LC-FAIMS-MS

Feature determination

DF and CF Selection for Untargeted Analysis of Human Urine

FAIMS-MS

Human Urine TIC – Scanning approach

Human Urine TIC – Scanning approach

- CF deconvolution into individual channels
- CF adds another dimension of separation

Urinary Creatinine

Isobaric Separation

Reduction in Chemical Noise and Interferences

m/z 331.21, RT 4.24 min

FAIMS off = 0 features, FAIMS on = 1 features

In-source CID vs FAIMS-selected CID LC-MS LC-FAIMS-MS

FAIMS-IN-SOURCE COLLISION INDUCED DISSOCIATION FISCID

Untargeted Feature Determination

Acquisition of Nested Data Sets

Identified features based upon RT, *m/z* and CF

Conclusions

- Acquisition of LC-FAIMS-MS nested data sets on timescale of UHPLC peak for the first time
- Increase in peak capacity using LC-FAIMS-MS in comparison to LC-MS
- Higher level of orthogonality with m/z / RT than IMS
- Separation of isobaric and co-eluting analytes
- DF + CF as additional identifiers
- Can be integrated into non-targeted omics workflows
- Applicable to a range of mass spectrometers

Acknowledgments

- Loughborough University:
 - Colin Creaser
 - James Reynolds
 - Matthew Turner

- Owlstone:
 - Lauren Brown
- Staff and researchers at the Centre for Analytical Science

Contact me: K.Arthur@lboro.ac.uk

