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Abstract
Background Breath analysis is a burgeoning field, with interest in volatile organic compounds (VOCs) as
a noninvasive diagnostic tool or an outcome measure, but no randomised controlled trials (RCTs) have yet
evaluated this technology in a clinical trial longitudinally. In a pilot RCT, our exploratory objectives were
feasibility of measuring VOCs via multiple techniques, assessing relationships between VOCs and
Haemophilus colonisation and whether CXCR2 antagonism with danirixin altered lung microbiome
composition in individuals with COPD.
Method 43 participants had VOCs and sputum biomarkers evaluated. VOCs and induced sputum were
collected after 6 h of fasting at screening and at days 1, 7 and 14. VOCs were analysed via gas
chromatography mass spectrometry (GC-MS), field asymmetric ion mobility spectrometry (FAIMS) and
eNose. The primary outcome for these analyses was the relationship between VOCs and Haemophilus
abundance determined by 16S rRNA sequencing.
Results A joint-effects model demonstrated a modest relationship between four exhaled VOCs and
Haemophilus relative abundance (R2=0.55) measured only by GC-MS, but not as measured using gas
chromtaography FAIMS or eNose. There was considerable variability in absolute quantities of individual
VOCs longitudinally.
Conclusions VOC measurement in clinical trials to identify subsets of COPD is feasible, but assessment of
new VOC technologies must include concurrent GC-MS validation. Further work to standardise collection
of VOCs and measuring a background or “housekeeper” VOC is required to understand and normalise
individual VOC quantities.

Introduction
Breath analysis via measurement of volatile organic compounds (VOCs) is a burgeoning and emerging
field, with interest in the use of VOCs as a noninvasive tool for patient diagnosis and stratification or even
as an outcome measure in clinical trials. One such example is fractional exhaled nitric oxide (FeNO), which
has been successfully adopted into clinical and research practice [1]. Breath analyses have been shown to
distinguish smokers from nonsmokers [2], and COPD subjects from non-COPD subjects [3], as well as
relating to COPD severity [4] in cross-sectional sampling.

The lung microbiome may be an important disease modulator in COPD, where Haemophilus influenzae
colonisation appears to increase neutrophilic inflammation, including formation of neutrophil extracellular
traps (NETs) [5]. Although ordinarily a host defence mechanism [6], excessive NETs may cause host
damage in airways disease [7], and may provide the mechanistic link between airway infection/
colonisation, airway inflammation and disease progression. Noninvasive diagnosis of airway infection and
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inflammation could enhance targeting of antibiotic or anti-inflammatory therapies such as CXCR2
antagonists, which have been shown to reduce NET production in vitro [8, 9].

Breathomics provide one such opportunity for noninvasive diagnosis. Breath samples can be analysed on a
variety of platforms. Gas chromatography mass spectrometry (GC-MS) is considered the gold standard and
can distinguish individual VOCs. Field asymmetric ion mobility spectrometry (FAIMS), for example via
Lonestar (Owlstone Medical, Cambridge, UK), relies on VOCs from a breath sample travelling through a
charged chamber, and the pattern of migration according to ionic charge allows individual compounds to
be distinguished. Electronic nose (eNose) devices are electronic systems containing chemoresistor sensors
that generate an electric signal upon encountering a gaseous mixture. For example, the Cyranose
(Sensigent, Baldwin Park, CA, USA) device has been used widely in the field, containing 32 composite
polymer carbon black sensors that each generate a signal. By definition, eNose devices cannot distinguish
individual VOCs, but may be useful for pattern recognition. While other platforms for breathomics exist,
FAIMS and eNose methods are currently being explored widely in the clinical research setting. In the case
of eNoses, these are portable and therefore can ultimately form point-of-care tests. FAIMS technology also
has the potential to be miniaturised for point-of-care use if a pattern of VOCs of interest is established.

If breathomics are to be used for patient selection in clinical studies, they first need evaluation for
feasibility in randomised controlled trials (RCTs). The advent of sample collection via sorbent tubes with
the ReCIVA device (Owlstone Medical) has only recently enabled centralised VOC analyses [10] via
storage and shipping of breath samples at room temperature, but sparse longitudinal data to inform trial
design has limited adoption, and to date no RCTs have evaluated VOCs longitudinally. Furthermore, no
study has looked at Haemophilus breath signals specifically. Several studies have found VOCs or eNose
signals associated with COPD exacerbations [11, 12] with three eNose studies specifically elucidating
breath signals associated with exacerbations caused by bacterial/viral infection [13–15]. However, no study
has focused on Haemophilus or microbiome colonisation, and the eNose studies on viral/bacterial
infections lacked the ability to determine specific VOCs.

We conducted pilot RCT primarily to study the effects of a CXCR2 antagonist, danirixin, the primary
results for which have been published [16]. In this pilot RCT, our exploratory objectives were feasibility of
measuring VOCs via multiple techniques, assessing relationships between VOCs and Haemophilus
colonisation, and whether CXCR2 antagonism with danirixin altered lung microbiome composition in
individuals with COPD.

Methods
In a double-blind RCT (NCT03250689) [16], participants were randomised (3:1) to receive danirixin
35 mg twice daily or placebo for 14 days.

Participants were included if they were aged between 50 and 75 years, with a clinical diagnosis of COPD
with mild to moderate airflow obstruction (post-bronchodilator forced expiratory volume in 1 s (FEV1)/
forced vital capacity ratio <0.7 and FEV1 ⩾40% predicted at screening), had elevated sputum NETs based
on screening assay for histone–elastase complexes of >0.5 units·mL−1 sputum, and were current or former
smokers with a minimum 10 pack-year history. Patients with lung diseases other than COPD or recent
pneumonia were excluded from the study, and patients on medication known to impact NETs formation
were also excluded, for example, use of phosphodiesterase-4 inhibitors [17]: roflumilast, crisaborole and
apremilast, broad-spectrum phosphodiesterase inhibitors (e.g. theophylline), raloxifene and
molecular-weight heparin. Additionally, systemic immunosuppressive medication, including current oral
corticosteroids at a dose >5 mg, concurrently or within 28 days preceding the screening visit, acute or
chronic use of antibiotics, including macrolides for the prevention or treatment of COPD exacerbations
were prohibited. Examples of chronic use include daily or two to three times per week for ⩾3 months.
Prohibited medications related to danirixin specifically were oral or injectable CYP3A4 or BCRP
substrates with narrow therapeutic index.

Patients meeting inclusion criteria were randomised and underwent key assessments, including spirometry,
VOC sampling via a ReCIVA device, induced sputum (via up to 4% nebulised saline) and venepuncture at
screening, day 1, day 7 and day 14. Patients who failed screening still provided sputum and VOCs samples
at the screening visit, though they were not randomised to dosing groups for further visits and did not
provide any other sample type. Sputum and breath samples from screen failures were included in analyses.
VOC samples were taken after 6 h of fasting on all visits; at the baseline visit subjects additionally
provided an extra VOC sample 4 h after dosing. Participants who were current smokers were asked to
refrain from smoking for at least 4 h prior to each visit. Sputum measurements included microbiome
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(profiled via 16S rRNA gene sequencing), NETs (immunoassays for histone elastase and DNA elastase
complexes, confocal microscopy for sputum NET area), and sputum neutrophils using methods described
previously [5]. Sputum samples were additionally assessed for quality via percentage of squamous cell and
viable leukocyte counts, and a primary completer population defined on the basis of having “good” or
“acceptable” quality sputum at baseline and day 14; the primary completer population was used for NETs
analyses, although all sputum samples were used for the microbiome analyses. Four pairs of VOC samples
were taken at each measurement time point, and were subject to measurement via three techniques at a
centralised laboratory: GC-MS, FAIMS via Lonestar and an eNose device, Cyranose. The fourth VOC sample
pair was analysed by GC-MS when possible (i.e. when the back-up was not needed due to failure of primary
sample on any of the three techniques) to provide a replicate measurement to increase accuracy of VOC levels.

For the VOC samples, a quality control (QC) sample was run between every four patient samples, and
background monitoring was carried out with a blank tube run after every four patient samples and after
every QC sample. Blank tubes were clean tubes used to monitor potential carry-over from one sample to
the next or incomplete desorption; neither was found to be an issue. VOC levels were corrected for
analytical variation/instrument drift by normalisation to the average drift in intensity of a mixture of
external standards, i.e. the QC samples. This method was found to be superior to normalisation methods
using the breath samples themselves, such as scaling to total signal intensity, in reducing analytical
variation. The QC samples were made by spiking on a fixed volume of a QC solution onto a clean sorbent
tube and briefly purging with high-purity nitrogen. The QC solution was composed of a selection of
chemicals meant to reflect classes of VOCs commonly found in breath all at fixed concentrations. Ambient
background controls were not collected or used for background subtraction.

A thermal desorption GC-MS chromatogram was converted into a features list and automatic mapping was
applied to identify a unique set of characteristics with subsequent visual inspection to check peak shape
and retention time, and specificity of ions. All molecular features of interest (MFs) were run against the
National Institute of Standards and Technology standard database; when match between library and
compound was >70%, the MF was given a tentative ID.

The primary end-point for the study was change from baseline in sputum NETs as measured via histone
elastase immunoassays, and although sample size was based on feasibility, we powered the study for a
70% probability of detecting a true reduction of 30% reduction in NETs. Changes in lung microbiome and
VOCs were exploratory end-points.

To test relationships between Haemophilus and VOCs, principal component analysis, single-effects models
and joint-effects models were done with the sklearn, statsmodels and cvglmnet packages, respectively, in
Python v3.6 in June 2019. All analyses focused on samples taken at the screening visit and were
cross-sectional across the entire patient population regardless of being screening pass/fail. The effect of
screening pass/fail on subsequent findings was assessed by confounder analysis and was not found to have
any significant effect. Outlier capping was performed independently on each molecular feature using
Tukey fences prior to the single- and joint-effect analyses. In cases where patient provided two screening
breath samples that were successfully analysed by GC-MS, single-effect regression models used a Huber
sandwich variance estimator to allow for the inclusion of multiple samples per patient. Permutation testing
was used to adjust MF p-values for multiple testing [18]. Joint-effects regression models were built on all
MFs with unadjusted p<0.2 from the single-effects analysis using least absolute shrinkage and selection
operator (LASSO) regression. The shrinkage (λ) parameter was estimated using leave-group-out
cross-validation, each group being all samples from a single patient. Relative abundance of the
Haemophilus genus was used as a continuous outcome variable. 16S rRNA gene PCR products were
analysed using the QIIME pipeline (version 1.9.1) [19] and taxonomies were assigned using a closed
reference alignment to the Greengenes 16S rRNA database (version 13_8). If identification was not
possible at the genus level, the operational taxonomic unites (OTUs) were classified at a higher taxonomic
level. OTUs with a maximum representation in a sample of 0.5% were excluded.

All participants provided written informed consent. The East of Scotland Research Ethics Service 1
(reference: 17/SS/0111) provided ethical approval for the study, which was carried out in accordance with
the Declaration of Helsinki.

Results
Baseline characteristics
43 participants were screened and 19 randomised (14 danirixin, five placebo) out of a planned 32 (figure 1);
the study was terminated early due to cessation of the danirixin development programme. Both treatment
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groups were similar in terms of age and baseline FEV1 (table 1), although there was a greater proportion of
current smokers in the placebo group (43%) in comparison to the danirixin group (20%).

VOC measures
For participants who failed screening, the VOC samples and sputum samples for the microbiome were
included in the analyses for exploring the relationship between Haemophilus abundance and VOCs at the

TABLE 1 Baseline demographics of trial participants

Placebo Danirixin

Participants 5 14
Age, years 62±6 65±7
Male/female 2/3 6/8
White/Caucasian/European 5 14
Current smoker, % 2043 4320
Smoking history, pack-years 48±13 44±19
Body mass index, kg·m−2 30.9 27.1
FEV1, L 2.49±0.64 1.94±0.71
FEV1, % predicted 79.1±7.5 69.5±18.4
FVC, L 4.07±1.16 3.34±1.17
FEV1/FVC 0.62±0.08 0.59±0.08
CAT score 17.0±1.00 17.3±5.97
Medications
Long-acting muscarinic antagonist 3 (60) 9 (64)
Short-acting β2-agonist 4 (80) 8 (57)
Inhaled corticosteroid 3 (60) 6 (43)
Long-acting β2-agonist 3 (60) 9 (64)
Systemic corticosteroid 0 1 (7)
Anti-infectives 0 1 (7)

Data are presented as n, mean±SD or n (%), unless otherwise stated. FEV1: forced expiratory volume in 1 s; FVC:
forced vital capacity; CAT: COPD Assessment Test.

43 screened for eligibility

(41 provided VOC samples)

20 randomised

5 assigned to placebo

5 assigned to placebo

3 primary completers

15 assigned to danirixin

14 completed study

8 primary completers

1 randomised but not dosed

(trial terminated early)

Screen failures  n=23

  Spirometry  n=9

  Baseline sputum NETs n=8

  Inability to provide sputum n=1

  Others   n=5

FIGURE 1 Consolidated Standards of Reporting Trials diagram for trial participants. The “primary completer”
population was defined via subjects who provided “good”- or “acceptable”-quality sputum samples (based on
percentage of squamous cells and viable leukocytes) at baseline and day 14. The primary completer
population was used for sputum neutrophil extracellular traps (NETs) analyses, but the entire study population
was used for the microbiome analysis. VOC: volatile organic compound.
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screening visit. There were 41 participants who provided VOC samples at the screening visit; only one
participant was unable to provide sputum at screening.

Subsequent to screening, a primary completer population for the study was identified on the basis of
acceptable sputum quality at both baseline and day 14. This resulted in three patients in the placebo arm
and eight in the danirixin arm being part of the primary completer population for the purposes of
measuring sputum NETs.

176 VOC samples were collected from 41 patients, but 68 samples were excluded at QC stage (n=57 due
to detector saturation (thermal desorption), n=7 due to tube leak (thermal desorption), n=1 due to
poor-quality in lab (machine maintenance), n=1 due to low volume at collection) and six samples did not
have matching microbiome analysis at screening. From the screening visit, this resulted in 31 samples from
22 patients. MFs or VOCs showed considerable variability in absolute levels longitudinally.

Microbiome
There were no statistically significant differences between treatment groups in microbiome α-diversity, total
bacterial load or relative Haemophilus abundance (figure 2). Lung microbiome composition appeared
broadly similar to that seen in other COPD cohorts (figure 2), but abundance of Haemophilus was lower
than that observed in COPD cohorts enriched for frequently exacerbating participants [20, 21].

Relationship between individual VOCs and Haemophilus, sputum neutrophils and NETs
Cross-sectional correlations between VOC levels and other factors were assessed using samples from the
screening visit. GC-MS identified 105 MFs; a single-effects model for individual MFs identified four
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VOCs with significant correlations (R∼0.15) with Haemophilus abundance. A joint-effects model with
eight VOCs gave a modest correlation with Haemophilus (R2=0.55) (figure 3). FAIMS identified 55 MFs;
a single-effects model for Haemophilus identified one significant MF with poor correlation; and a
joint-effects model could not be properly evaluated.

There was no overlap between VOCs that had the highest correlations with Haemophilus abundance,
sputum neutrophils or NETs (figure 4); no significant correlation between individual VOCs and sputum
neutrophils and NETs as measured via GC-MS or GC-FAIMS was observed, but the small number of
paired samples available for these analyses limited definitive conclusions. VOCs or MFs that correlated
most strongly with Haemophilus were different to those that correlated most strongly sputum NETs or
neutrophils, suggesting distinct biological pathways and/or origins for these VOCs.

For Cyranose, 8.5% of samples could not be analysed, as sensor data were abnormally low. Sensors
displayed time trends unrelated to subject, treatment or visit; after July 2018 there was a noticeable
decrease in mean and variance for all sensors, suggesting sensor drift. No relationship was observed
between sensor signals and Haemophilus abundance across the population at baseline sputum neutrophils
or NETs.

Discussion
Measuring exhaled VOCs is feasible in RCTs; however, backup samples should be taken along with
stringent instrument monitoring due to the potential for QC failure. Individual VOCs may relate to
Haemophilus colonisation, and a joint-effects model found a modest correlation between VOCs and
Haemophilus relative abundance, but this relationship was only apparent via GC-MS analyses.

Three of the VOCs were tentatively identified as methylated hydrocarbons of similar chemical
functionality to those previously associated with inflammatory conditions in human subjects, although
different to hexane, nonanal and 1-propranolol recently identified as being related to eosinophilic asthma,
and undecane, indicative of a pauci-granulocytic sputum phenotype [22]. Identified VOCs from our
clinical in vivo samples were distinct from those reported in literature to be released in vitro by
H. influenzae [23]; however, it is possible that some of the unidentified hydrocarbons may prove a match.
In addition, the in vitro versus in vivo VOC profile may differ, since in vivo profiles will be modulated by
other microbiota components in addition to other factors such as diet or airway inflammation. There is a
paucity of data for disease-specific VOCs across the literature, with CHRISTIANSEN et al. [24] noting that no
candidate breath biomarkers in COPD were detectable in all the studies in their literature review, and only
three biomarkers were reported in more than one study. Thus, our present data add to the growing library
of compounds that may be important in COPD and airways disease.
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One reason for the differing VOC profiles across literature may be the variability in absolute levels of
compounds, which we observed in our own study, and has been noted even for established biomarkers.
FeNO is an example of an exhaled compound that has successfully been implemented into clinical practice,
and can used both clinically and in trials to identify patients with eosinophilic asthma. Despite becoming
an established biomarker, FeNO still demonstrates considerable intra-day, intra-patient variability in terms of
absolute levels [25]. Therefore, the longitudinal variability points to the need for standardised sampling
protocols, since it appears that a period of fasting alone may not be enough. There is also an urgent need
for identifying background VOCs for use as “housekeepers” to normalise levels of compounds against.
Taking ambient background samples may also help to eliminate some sources of variation. In addition, our
work with the Cyranose eNose device points to the need for considering calibration and drift, especially if
considering use at the bedside for diagnosis.

Although sampling was acceptable to patients and site staff in our study, with overall high compliance with
sampling, there was a notable rate of QC failure at the analysis stage. Since our study, further work has
suggested that it may be acceptable to freeze breath samples, which may allow for backup samples to be
taken and can mitigate failure at the analyses stage, although further validation work is required in this
regard. Coupled with the high QC failure rate for the VOC samples and early trial termination, the
limitation in paired sputum and VOC samples limited our ability to measure longitudinal relationships
between Haemophilus abundance, sputum neutrophils or NETs and VOCs.

Study results were inconclusive in determining whether CXCR2 antagonism altered lung microbiome
composition in COPD due to the early termination of the study; however, the 2-week treatment period was
probably too short to expect changes in microbiome composition. Furthermore, we sampled induced
sputum for microbiome, and subtle changes in the lower airway may be obscured by the high biomass
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from oral microbiome. The lower than anticipated sample size, high VOC sample failure rate and the lower
than expected Haemophilus relative abundance limited the ability to detect a relationship between VOCs
and Haemophilus at screening. While we included individuals with elevated sputum NETs, which may
correlate with Haemophilus abundance [5], our trial participants had higher FEV1 and were not enriched
for frequent exacerbations [20, 21], which could explain the lower Haemophilus predominance in our
study.

One limitation of our study was the imbalance between placebo and danirixin groups in baseline smoking
status, which could lead to differences in both NET formation and VOCs. Participants were asked to
refrain from smoking for ⩾4 h prior to each visit, however that time limit may be of insufficient duration
to impact VOCs. Furthermore, ongoing systemic inflammation from smoking between visits may impact
NETs production. Only one subject in the danirixin group was on systemic steroids and anti-infectives
during the study; therefore, this is unlikely to impact our overall results and conclusions. Additionally, we
note that there is a lack of robust evidence that steroids impact NET production.

In conclusion, measuring exhaled VOCs is feasible in RCTs, and our results suggest that VOCs may relate
to Haemophilus abundance. Several challenges remain for implementing breath analyses into RCTs,
especially the longitudinal variability in individual VOC abundance. We recommend that GC-MS form
part of any VOC evaluation, and that backup samples are taken in further exploration of the utility of
VOCs as a diagnostic tool.
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