

Enhancing Biological Analyses using UltraFAIMS-MS

Lauren Brown, Owlstone Medical Ltd.

New Advances in Biological Mass Spectrometry, University of Birmingham, December 13th 2016.

Commercial in Confidence

www.owlagonemedical.com

Introduction

- Key to biological analyses using mass spectrometry is being able separate a particular target component from other species that are also present in the sample.
- Achieving more separation:
 - Improve mass spectrometer resolution so that ever increasingly smaller differences in *m/z* can be resolved.
 - Apply another separation technique upstream of the mass spectrometer.
- Research into alternative separation techniques continues, as analysts look for ways of tackling separation problems that existing techniques cannot solve.

Ion mobility background

- FAIMS = Field Asymmetric Ion Mobility Spectrometry (or DMS)
- Variant of Ion mobility spectrometry (IMS)
 - Distinguishing ions according to differences in the speed that they move through a buffer gas under the influence of an electric field.

- At low fields, an ion's mobility (K) is constant and is a function of charge (z) and collision cross-section (Ω)
- Ions with a larger cross-section are more likely to collide with gas molecules, travelling more slowly than smaller ions.

FAIMS basics

• FAIMS uses an asymmetric alternating electric field, perpendicular to the direction of travel.

- Ions will be subjected to an electric field condition which causes them to drift in one direction at a velocity based on its ion mobility.
- As the field is reversed in direction and magnitude, the ion changes direction and speed based on its new mobility at the new electric field conditions.
- This is repeated at a rate based on the operating frequency of the device and usually results in a net drift towards an electrode.
- By applying an additional DC compensation field (CF), this sideways drift can be cancelled out, correcting for the drift and focusses ions through the device
 - Analogy to an atmospheric pressure quadrupole

The FAIMS device is a tunable filter High field Dispersion field (DF) Low field To MS

- As the field reverses direction and magnitude, the ion changes direction and speed
- Each ion has a specific net sideways drift velocity
- The sideways drift can be cancelled out by applying the CF

What is UltraFAIMS?

100 um

700 um

- Miniaturised version of FAIMS, in which the electrodes are formed from a micro-manufactured "chip"
 - Each device consists of a set of parallel gaps in a metal substrate that forms the electrodes
 - The key dimensions are the electrode gap (100 um) and the channel length (700 um)
 - The small scale enables very fast separation, due to:
 - Short ion residence times <200µs (MS dependent)
 - low-voltage drive electronics
- Provides an additional separation stage prior to mass spectrometry

Why use ultraFAIMS with mass spectrometry?

- To improve mass spectral detection in the absence of other pre-separation techniques
 - Pre-separation of ions formed by ambient ionisation techniques
- Separation of isobaric/isomeric interferences, eliminating the need for or speeding up LC for higher throughput analyses
 - Online SPE
- Extra dimension of fast separation in combination with LC-MS
 - Enhanced detection of low abundance analytes for untargeted omics applications

UltraFAIMS combined with ambient ionisation sources

- Ambient ionisation advantages:
 - Analysis of samples in situ
 - Determination of spatial distribution of species
 - Minimal sample preparation
- Disadvantages
 - Complex biological samples have inherent matrix effects
 - No pre-separation means analysis cannot be selective
- Some preliminary DART work: <u>http://www.owlstonenanotech.com/sites/default/files/ultrafaims/UMC0042-DART-preliminary-test-results.pdf</u>
- Liquid Extraction Surface Analysis (LESA)
- Desorption Electrospray Ionisation(DESI) Ambient Ionization and FAIMS Mass Spectrometry for Enhanced Imaging of Multiply Charged Molecular Ions in Biological Tissues Clara L. Feider, Natalia Elizondo, and Livia S. Eberlin; *Analytical Chemistry* 2016 88 (23), 11533-11541 DOI: 10.1021/acs.analchem.6b02798

DESI-UltraFAIMS-MS

- FAIMS enabled semi targeted detection of multiply charged molecular species at enhanced S/N.
- Improved visualization of spatial distributions.
- Allowed detection of species which were unseen by ambient ionization MSI alone.

- This mass spectral enhancement was two-fold:
 - Increased S/N due to suppressed background.
 - Increased absolute signal in some cases as the trap was preferentially filled with FAIMS-transmitted low abundance ions, rather than naturally high abundance species.

Feider, C.L.; Elizondo, N.; Eberlin, L.S.; Anal. Chem. 2016 88 (23) Commercial in Confidence

DESI-UltraFAIMS-MS

• 84 proteins were detected using FAIMS, 66 of which were not otherwise detected

• Used to distinguish high grade serous ovarian cancer, necrotic ovarian tissue, and normal ovarian tissue under optimized LMJ-SSP-FAIMS conditions.

Commercial in Confidence

Feider, C.L.; Elizondo, N.; Eberlin, L.S.; *Anal. Chem.* **2016** *88* (23)

High throughput analysis

• Traditional biological mass spectrometry:

• Shorten LC separation using a quick gradient to remove salts prior to mass spectral detection and use FAIMS to separate the co-eluting isomers:

• Lose LC completely, remove salts via SPE and use FAIMS to separate isomers prior to mass spectral analysis:

Vitamin D3 metabolite isomers

- Vitamin D, along with calcium, promotes bone growth in children and aids in the prevention of osteoporosis in older adults.
- Vitamin D₃ is metabolized in the liver to form 25-hydroxyvitamin D₃ (25-OH D₃) and levels are routinely measured for diagnostic assessment of vitamin D related diseases
- Biologically inactive 3-epi analog of 25-OH D₃ (3-epi-25OH-D₃) has been reported
 - Interference from the inactive 3-epi analog may lead to inaccurate information for treatment and prevention.
- LC-MS/MS is currently used to quantify 25-OH D₃ and diagnose vitamin D disorders, however, lengthy analysis times limit its utility for high-throughput analyses.
- Used UltraFAIMS-MS to separate the hydroxyvitamin D₃ epimers using in timescales suitable for high-throughput clinical analysis.

Vitamin D3 metabolite isomers

• The 2 isomers can be identified due to differences in their CF position

- In equimolar solutions, both 25-hydroxy vitamin D3 and 3-epi-25-hydroxy vitamin D3 can be monitored with just 2% interference from the other epimer.
- Each epimer could be identified from a mixture over ratios of 2:1 (25-OH vitamin D3: epi 25-OH vitamin D3) to at least 20:1, covering the whole biologically relevant range

Vitamin D3 metabolite isomers

- Samples containing 25-OH vitamin D3 and epi 25-OH vitamin D3 were analysed at increasing concentrations at a fixed10:1 ratio of 25-OH D₃ to 3-epi 25-OH D₃.
- Linear calibration curves were generated for both epimers, showing peak height to be related to concentration.

 A test 'unknown' sample, containing 500 n Mol L⁻¹ 25-OH vitamin D3 and 50 n Mol L⁻¹ epi 25-OH vitamin D3 was analysed:

True concentration (n Mol L ⁻¹)	Calculated concentration (n Mol L ⁻¹)	Error
50	53	+ 6%
Commercial in Confidence		

2β and 6β-hydroxytestosterone

- 6β -hydroxytestosterone (6β -HT) is the major metabolite of testosterone
- However some drug candidates promote formation of 2β -HT while inhibiting 6β -HT

- 2β -HT and 6β -HT are isobaric with no unique MS/MS fragmentations
- LC separation is currently used in these cases
- A faster method for testing potential drug candidates is highly desirable
 - E.g. Online-SPE methods

2β and 6β-hydroxytestosterone separation

Signal to noise improvements

Loop injections of 6 β -HT (no 2 β -HT in sample) at 1 μ M, with and without FAIMS separation.

As well as removing interference from the isomer, FAIMS is also improving signal to noise.

Quantitative Performance - 6β-HT Calibration curve

LC-UltraFAIMS-MS for untargeted "-omics" applications

- In non-targeted 'omics' experiments such as metabolomics and proteomics, typically liquid or gas chromatography (LC or GC) combined with mass spectrometry (MS) is used to separate and analyse complex biological matrices
- Molecular features can however be missed or remain hidden within the dataset using these techniques due to:
 - Trace level features unresolved from the noise
 - Unresolved isomeric or isobaric species
- UltraFAIMS operating in a scanning mode provides an extra dimension of separation for LC-MS to improve peak capacity and reduce chemical noise

LC-UltraFAIMS-MS data acquisition

All CFs scanning

- FAIMS hops between 11 CF settings/s
- ToF set to scan 11 spectra/second
 - 1 mass spectra per CF
- Nested data sets within the chromatographic peak
- Synchronised using contact closure interface

Detection of isobaric compounds

- FAIMS off = 0 features due to high baseline
- FAIMS on = Reduction in noise, resulting in additional feature detected
 - (45x improvement in S/N)

Untargeted feature determination

- UltraFAIMS is capable of separating things undistinguishable by LC-MS alone
- UltraFAIMS reduces chemical background, making low abundance ions easier to detect

• Both effects contribute to an increased number of detected features and therefore an increased likelihood of detecting metabolites.

Detection of isobaric compounds

- FAIMS off = 1 feature detected
- FAIMS on = 2 features due to additional orthogonal separation

Identified feature comparison

• 1838 spectral features were identified using LC-ultraFAIMS-MS, 1445 of which were unique to UltraFAIMS, compared with 681 identified by LC-MS alone.

Application to metabolomics

- Metabolomics looks to characterise a set of metabolites present within an organism.
 - Metabolite changes due to cellular processes
 - e.g. detection of particular disease states due to the presence or absence of certain metabolites.
- Historically been difficult due to the complexity of biological samples.
- We believe the reduction of background and subsequent enhanced feature detection due to the addition of FAIMS to LC-MS opens up new opportunities for LC-MS based metabolomics.

Utility to disease diagnostics: Colorectal cancer

• Patients identified at Stage I have around a 97% five-year relative survival rate, while those identified at Stage IV have around a 7.5% five-year relative survival rate.

- Existing non-invasive colorectal cancer (CRC) screening methods show relatively low sensitivities (66 96%, method dependent).
- To increase the number of early diagnoses, CRC screening must be improved.
- In collaboration with UHCW and University of Warwick we are undergoing a 2000 patient study into the detection of biomarkers of CRC.
- Can we apply the LC-UltraFAIMS-MS method to biological samples from CRC patients and use the additional feature detection ability to diagnoses early stage disease?

Summary

- UltraFAIMS is a fast gas-phase separation stage for MS and LC-MS
- Available for Thermo, Agilent and Bruker mass spectrometers
- Used in combination with ambient ionisation sources to enhance analyte detection in the absence of traditional pre-separation methods
- Can replace LC separations of isomeric species, speeding up analysis times
- An UltraFAIMS step can be added to LC-MS to improve peak capacity and aid nontargeted analysis
 - Resolving isobaric species
 - Separating trace level components from chromatographic noise
- Further detail/tech specs etc on our website <u>www.ultrafaims.com</u>
- For further info on IMS in general....

"Ion Mobility Mass Spectrometry: The Next Five Years" (88-page e-book)

Download free from: http://bit.ly/owlstone-jsb

Are you a member of the LinkedIn IMS-MS group yet? Join to find out what the IMS-MS community is discussing.

Commercial in Confiden<u>http://bit.ly/IMMSgroup</u>

Acknowledgements

• University of Texas

Livia Eberlin Clara Feider

• Roche

Noah Weiss Roland Thiele Uwe Kobold

• Owlstone

Robert Smith Kayleigh Arthur

Loughborough University

Colin Creaser James Reynolds Matthew Turner

TEXAS The University of Texas at Austin

THANK YOU FOR YOUR ATTENTION!

Any questions?

To find out more about UltraFAIMS, visit the product page at: <u>www.ultrafaims.com</u>