
Breath Biopsy® OMNI®:
Data Normalization Project 

Introduction

Breath Biopsy® OMNI® is the most advanced service for 
global analysis of volatile organic compounds (VOCs) 
on breath and is a platform that we are constantly 
innovating. OMNI is a complete end-to-end solution 
incorporating expert support for study design, data 
analysis and interpretation as well as specialist 
technology for breath collection and analysis with high 
resolution accurate mass (HRAM) mass spectrometry.

Analytical variability is the tendency of an analytical 
platform to produce slightly different outcomes for 
repeated meausrements, often as the platform changes 
over time. Many factors contribute to these changes, 
such as mechanical wear and tear, replacing consumable 
components such as ion sources, and recalibration of 
the platform over many analytical runs. The variability 
introduced can mask the ground truth of the data, as 
identical inputs can yield different outputs, and make it 
difficult to assess the variability of interest.

There are many methods of tracking analytical 
variability, ranging from quality control (QC) samples 
to pooled samples. OMNI uses internal standards 
(ISs); 8 deuterated compounds that are injected into 
every sample at the same concentration. The increase 
and decrease over time of peak areas associated 
with compounds over time can be interpreted as the 
analytical variability associated with the platform for 
a specific time frame, such as during a study where 
samples are analyzed over multiple batches. Analytical 
variability is clearly undesirable as it can mask any 
potential biological variability, and so normalization

(also known as batch effect correction) is a process 
that attempts to remove this variability, while 
preserving variability of interest.

Our previous normalization method consisted of 
dividing the peak area of every VOC in a sample by the 
median peak area of its eight ISs. This method leads to 
only two ISs dictating the scaling factor of every VOC in 
a sample, and in a past OMNI experiment, we found that 
these two standards were the same for every VOC in 
every sample as the relative sensitivity to the different 
ISs was orders of magnitude larger than the analytical 
variability.  

It has been frequently observed that IS compounds can 
behave differently from each other over time, so taking 
only two ISs into account is unlikely to be optimal. 
Methods which use additional information about 
ISs (e.g., chemical properties) to select the internal 
standards used in the normalization of a specific VOC 
are less likely to over or under correct data, and are 
more likely to restore truth in our data.

The Normalization Project was run with the aim 
of developing metrics that quantify the effect of 
normalization on OMNI data and improve upon our 
previous normalization method. This new method was 
to be a robust, fit-for-purpose method that removed 
analytical variability in OMNI data, while restoring/
preserving ‘truth’ (biological variability) for both 
targeted and untargeted OMNI data.

Background

The previous method of normalization derived a scaling 
factor from the median peak area of the eight ISs in 
a sample, then divided every VOC peak area in the 
sample by that scaling factor. This is a very common 
method used in metabolomics – other common 
methods are the selection of a single IS, or the use of 
the closest eluting IS. The quality of the normalized 
data was assessed using principal component analysis 
(PCA), a multivariate approach that can reduce 
the dimensionality of data by extracting maximal, 
orthogonal sources of variation into single features, 
known as Principal Components (PCs).
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A batch is a sequence of up to 30 samples of interest 
and a number of quality control samples, which are 
analyzed using the OMNI method; a single study 
may comprise of many batches. If batch effects are a 
significant source of variation in the data, clustering 
by batch is expected in the first few PCs, upon visual 
inspection. For example, in Figure 1, a PCA of an OMNI 
dataset containing 4 different types of samples is shown.
The two primary sources of variation in the data, PC001 
and PC002, account for ~40% of the variance in the data 
and show a clear clustering by analytical batch with 
earlier batches standing out from the rest (Figure 1a). 
Clustering by sample type is shown in later sources of 
variation, PC003 and PC004 (Figure 1b), which account 
for 8.5% and 6.6% of the total variance respectively. 
Differing sample types are inherently distinct, and seeing 
clustering by them in PCA is desirable, however, in this 
case undesirable sources of variation (batch) are more 
prominent thant the desirable variaton between sample 
types.

Pitfalls to be avoided

Whilst calculating the median of IS peak areas is a 
reasonable approach to capture the analytical variability 
in the data, there are a number of inherent issues.

Firstly, the magnitude of IS peak areas may not be 
consistent across different compounds; one IS may 
consistently produce a peak area orders of magnitude 
higher than another and consequently, the variability of 
the largest peak area ISs will dominate any calculations 
of analytical variability. Moreover, the ranking of ISs by 
peak area may be unaffected by platform variability.

Utilizing median peak areas to derive scale factors 
necessitates the use of only one or two peaks in the final 
calculation, and while the other peaks may influence the 
selection of those areas, fluctuations in the other peaks 
are not captured in the scaling factors. For example, in 
the OMNI example dataset above, normalizing with the 
median of eight IS peak areas led to the same two ISs 
dictating the scaling factor for every VOC in each sample 
of the study. It is therefore unlikely that this method 
considers all the available information when correcting 
for the analytical variability of the platform.

These PCAs are inspected once again post normalization 
to ensure that undesirable analytical variability does 
not account for a large portion of the variability in the 
data. Figure 2 shows the same example dataset post 
normalization. The trends in the data for both batch 
and sample type appear comparable, but upon further 
inspection we can see the PCs attributed to these trends 
have changed, with sample type now clustering in the 
primary sources of variation (PC001 and PC002), and 
clustering by batch falling to PC004 and PC005, which 
contribute much less to the total variance of our data. 
The earlier batches also overlap more with the later ones 
when compared to pre-normalized data. 
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Figure 1: A PCA decomposition of an example dataset, colored by analytical sequence 
(above) and sample type (below).

Figure 2: A PCA decomposition of the same example dataset post normalization 
colored by analytical sequence (above) and sample type (below).

This is a positive outcome for the data set, as being 
sure that the variation in the data is associated with 
the primary outcome provides a greater probability of 
finding statistically significant results when conducting 
statistical analysis and reduces the chances of false 
positive results.
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Finally, both VOCs and ISs alike have a wide range of 
differing chemical traits and properties. It is unlikely that 
every VOC will have an identical response to analytical 
changes on the platform. This can be observed when 
comparing how ISs peak areas change over time during 
a study.

While the general trends and changes in response 
are comparable, there are clear differences in how 
these compounds behave. If these differences are due 
to chemical characteristics shared with other VOCs, 
we can much more accurately infer the effects of 
analytical variability on the response of those VOCs. 
This information can be captured in an improved 
normalization protocol.

A more sophisticated approach is needed

A wide range of methods have been developed for 
tackling the removal of analytical variability in mass 
spectrometry data, however, performances can vary 
greatly depending on the nature of the data being 
normalized and the general complexity of metabolomics 
data. Therefore, it is unlikely that a single, visual criteria 
(such as the PCA inspection discussed above) would 
accurately evaluate the success of normalization.

This initiated the Data Normalization Project to increase 
the normalization capability of the OMNI platform 
whilst creating the capacity to remove the variability 
associated with major analytical events, such as ion 
source changes. The project aimed to pull from existing 
literature and create a panel of normalization metrics 
specific to the OMNI platform, which can quantitatively 
assess the success of normalization with a greater 
degree of confidence.

Broad, commonly accepted criteria for assessing 
normalization performance have been laid out by Li et al. 
[1], and include: 

• Reduction of intragroup variation among samples,

• Effect on differential metabolomic analysis,

• Consistency of identified metabolomic markers among 
partitions of data,

• Influence on classification accuracy, and

• Correspondence between normalized data and some 
reference.

The expansive panel of metrics generated by the 
Normalization Project spans all five of these categories.    
One such metric for measuring the reduction of 
intragroup variation is the reduction in variability of QC 
samples [2]. At Owlstone, check standards are evenly 
distributed throughout batches to ensure the accurate 
tracking of analytical drift. These contain ISs in fixed 
concentrations so successful normalization methods 
should greatly reduce the variability observed in these 
samples, both within and between batches.

Calibration curves are run at the start of every OMNI 
batch to ensure linear response, which gives more 
data with a known input to track analytical variability. 
A typical quality measure for calibration curves is the 
R-squared of the linear fit made using your calibration 
samples. After normalization, when truth should have 
been restored in your data, this should increase. In 
addition, analytical variability between batches should 
be removed by normalization, so a calibration curve 
created from randomly sampled calibration samples 
from all batches should also show an increase in 
R-squared compared to unnormalized data.

Further metrics examine the mutual information 
between analytical batch and sources of variation in the 
data, ensuring that any variations of interest (such as 
biological) are at the forefront of the data.
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Figure 3: Internal standards over time in the OMNI example dataset.
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Contact us to find out more about breath biomarkers relevant to your area of interest and to 
discuss adding Breath Biopsy to your research.

breathbiopsy@owlstone.co.uk

ISs are a strong candidate for the tracking of analytical 
variability. However, the 8 ISs respond differently to 
sources of analytical variation (as seen in Figure 3). 
The different responses might be due to the differing 
chemical properties of the ISs, and this association is 
not taken advantage of in the current normalization 
method; a VOC with similar chemical properties to IS1 
is hypothesized to respond to analytical changes in 
the same way as IS1. Methods that can use any extra 
information about features (e.g., chemical properties) 
to select which ISs they should be normalized with are 
likely to perform better than methods which do not 
consider any additional properties.

A better way forward

In developing a new normalization method, both 
historical OMNI datasets and a specific experiment 
were used. The normalization experiment used both 
the primary and backup samples (2 pairs of sorbent 
tubes, collected during a single ReCIVA® sample), which 
should contain near identical concentrations of VOCs, 
to show that their similarity can be restored through 
normalization, even if a major analytical event has 
significantly changed the raw peak areas. This was done 
for both breath and ambient air samples, to ensure all 
potential matrices being run on the OMNI platform can 
be normalized.

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

Run empty tubes

Cold trap change

Ion source change

Normalization Experiment Design:

Figure 4: Process used in the normalization experiment. Sequence 1, 2, and 3 were 
taken under best case conditions and 4, 5, and 6 under worst case conditions.
Sequences were normalized with the aim of restoring truth.

The data from this experiment was used to assess a 
wide range of normalization methods including some 
found in literature, and some developed in house. 
Using the criteria for normalization performance listed 
above, our bespoke panel of normalization metrics 
was applied to these methods and compared to the 
benchmark performance set by our previous protocol. 
The best normalization method, which will be used on 
future OMNI datasets going forward, gave a significant 
performance increase in every metric, validated over 
several datasets.

The new approach allows for more specific scaling 
factors by considering each VOC separately rather than 
one for a whole sample, and weighting the contribution 
of each IS to the scaling factors by the likelihood that 
the analytical variability of a VOC is captured by that IS. 
It calculates these weightings by considering statistical 
similarity and chemical similarity, i.e. chemical traits 
common between the two compounds. 

When using the new method to normalize data, on 
average the variability (RSD%) of our check standards 
is reduced from 18.7% in unnormalized data to 7.9% 
between all analytical batches, and from 4.8% to 2.6% 
within batch. The R-squared of calibration curves ran 
within each batch, and calibration curves generated from 
randomly sampling calibration samples from all batches 
of a study, both increase (exceeding average R-squareds 
of 0.975 and 0.94 respectively).

Overall, the protocol generated by the Normalization 
Project successfully restores the truth in OMNI data, 
by more accurately capturing and removing analytical 
variability using our automated pipeline of methods and 
metrics.

Our constant innovation to further improve our platform 
is what makes OMNI the leading VOC biomarker 
discovery solution.

We look forward to sharing further advancements 
in the future and invite you to get in touch about 
incorporating Breath Biopsy into your research.
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