Optimizing Ion Separators for **DMS/FAIMS** at Ultra-High-Fields

Ashley Wilks, Danielle Toutoungi & Billy Boyle

American Chemical Society Fall Meeting – Analytical Division Conventional and Differential Ion Mobility Spectrometry - AM Session Philadelphia, PA. August 20 2012

DMS / FAIMS 101

Why Ultra-High Field Operation?

Increase analytical space

$$R = \frac{E_C}{w_{1/2}} = \frac{E_C K_0 N_0}{4N} \left(\frac{t_{res}}{D_{II} \ln 2}\right)^{1/2}$$
 Shvartsburg 2009

 $\frac{E_C}{N} = -\sum_{n=1}^{\infty} \kappa_n \left(\frac{E_D}{N}\right)^{2n+1}$

 κ relates property of waveform moments $< f_n >$ and alpha coefficents a_n

$$\kappa_1 = -a_1 \langle f_3 \rangle$$
 $\kappa_2 = (a_2 \langle f_5 \rangle) - (3\kappa_1 \alpha_1 \langle f_2 \rangle)$ κ_n

Truncating to only n = 1and n = 2 terms $(a_1 \& a_2)....$

$$E_C \propto E_D^2$$

Take advantage of high effective ion temperature (T_{eff}) ...

$$T_{eff} = T + \zeta . M . K_0^2 . N_0^2 (E_D/N)^2 / (3k_b)$$
$$T_{eff} \propto E_D^2$$

Challenges of Ultra-High-Field Operation

- Fabrication of High V asymmetric waveform drivers in a small form factor is challenging
- To relax the demand on the electronic drivers we want to narrow the gap size (g) (so higher fields may be generated with lower drive voltages)
 - → at **35 \mum**, V = **270V** yields $E_D \approx 80$ kV.cm⁻¹ (320Td at 1atm)
 - $\rightarrow\,$ at 250 μm V \approx 2000V is required

However –

- → A narrow gap requires high flow to support ion transmission (and sensitive detection)
- \rightarrow But this leads to peak broadening
- → Cannot therefore rely on a separation single gap

Enabling Ultra-High-Field Operation

Performance Parameters

Narrow gaps have been used to *push* the operational field limits in DMS / FAIMS but with penalties...

- Ion channels must be kept <u>short</u> to sustain acceptable ion transmission (sensitivity)
- <u>Fast ion separation time</u> is achieved t_{res} ~ 35μs (allowing very fast E_C:E_D scanning) but peaks are broadened by the t_{res} term in the equation defining peak capacity
- Also, the D_{II} leads to significant <u>transmission loss</u> at high fields (esp. for smaller, high K₀ analytes)
- Consequence is <u>moderate resolution</u> & <u>reduced</u> <u>data rate</u> (necessary to sample ion current on a timescale >> t_{res})
- Conclusion is separation device is not <u>fully</u>
 <u>optimal</u>

Resolution

$$R = \frac{E_C}{w_{1/2}} = \frac{E_C K_0 N_0}{4N} \left(\frac{t_{res}}{D_{II} ln2}\right)^{1/2}$$

WLSTONE

<u>Transmission</u>

$$\frac{I_{out}}{I_{in}} = A_{I(in)} Q. \exp\left(\frac{-t_{res} \pi^2 D_{II}}{g_{eff}^2}\right)$$

Effective gap width
$$g_{eff} = g - (K_{(0)}, E_{min}, t)$$

 $\frac{Anisotropic diffusion}{D_{II} = D \left[1 + \frac{\langle f_2 \rangle F_{II} M K_0^2 N_0^2 (E_D/N)^2}{3k_b T} \right]}$

Some Quantification...

Simply...

Comparing planar gaps

- Narrow gap hits transmission
- High flow (short residence time) hits resolution (peak width)
 - At g_{eff} = 35µm and flow = 375cm³.min⁻¹, w_{1/2} ~ 0.3Td (at 1atm) and T ~ 7%
 - This puts us close to the bottom end of the W_{1/2} curve which is good, but the ion transmission here is rather poor - there is sensitivity penalty for resolution

LSTONE

Clear Solution

Wider Gaps

- Higher flow
- Greater ion transmission without resolution penalty

Longer channel

- Increased residence time
- Narrower peak without transmission penalty

But...

 Need much higher voltage field drivers....

Gap width (g)	35 <i>vs.</i> 100μm
Length (I)	300 <i>vs.</i> 700μm
Area (A)	15 <i>vs.</i> 20mm ²
DF range (E _D /N)	350Td <i>vs.</i> 320Td
Res. time (t _{res})	~40µs <i>vs.</i> ~120µs

Narrow gap

Wide gap

Waveform Analysis & Comparisons

550V on 75µm gap = 78kV.cm⁻¹ (> 320Td at 1 atm)

 $< f_n >$ nearer "optimums" for 2-harmonic waveform and stable at high drive voltages (Shvartsburg 2009)

Transmission & Resolution Comparison

Peak width reduced by factor ~ 2 (and better at reduced flow) Transmission increased by factor > 10 at very high fields

Experimental (Large ions up to 1.5kDalton)

m/z	35µm 0Td	100µm 0Td	35µm 220Td	100µm 220Td	35µm 300Td	100µm 300Td
118	10	35	1.5	7	<1	1
322	15	50	4.5	20	1.5	8
622	60	60	35	50	5	15
922	70	80	60	70	15	45
1522	80	100	35	95	20	90

ア

What to do with it?

Ultimately we wish to explore the high field region more rigorously

- Effective Ion Temperature $(T_{eff}) \propto (E_D/N)^2$
- High field ion chemistry in both small and large molecules is of interest
- In small molecules (*e.g.* VOC sensing applications) the ion transmission spectrum holds valuable analyte classification information – *ions fragment at high field*
- For large molecules (in MS-hyphenated solutions) it is possible to exploit other T_{eff} dependent processes (*e.g.* ion conformational changes) to promote MS-prefiltering

STONE

Interesting avenues?

Acknowledgements

Owlstone Team

Michael Ugarov Yuqin Dai Harry Bunting William Frazer

Owlstone Inc 761 Main Avenue Norwalk, CT USA (+ 1) 203 908 4848

Owlstone Ltd 127 Cambridge Science Park Milton Road Cambridge, UK (+ 44) 1223 428 200

Useful References

E. V. Krylov , E. G. Nazarov, R. A. Miller (2007) Differential mobility spectrometer: Model of operation. Int J Mass Spectrom 266:76–85

A. A. Shvartsburg (2009) Differential Ion Mobility Spectrometry. CRC Press, Boca Raton

15 15