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Why Ultra-High Field Operation?

Increase analytical space MW ~ 50 – 180 AMU

K0 ~1.3 -2.4kV.cm-1

Shvartsburg 2009
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Take advantage of high effective ion 

temperature (Teff) …

Truncating to only n = 1 

and n =2 terms (a1 & a2)….

OP2



Challenges of Ultra-High-Field Operation

Peak V vs gap size (g) required to 

yield peak field of 75kV.cm-1

( = 320Td @ 1atm)

� Fabrication of High V asymmetric waveform 

drivers in a small form factor is challenging

� To relax the demand on the electronic drivers 

we want to narrow the gap size (g) (so higher 

fields may be generated with lower drive 

voltages)

→ at 35 µµµµm, V = 270V yields ED ≈

80kV.cm-1 (320Td at 1atm)
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30020 5080kV.cm-1 (320Td at 1atm)

→ at 250 µµµµm V ≈ 2000V is required

� However –

→ A narrow gap requires high flow to 

support ion transmission (and sensitive 

detection)

→ But this leads to peak broadening

→ Cannot therefore rely on a separation 

single gap



Enabling Ultra-High-Field Operation
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Performance Parameters

• Ion channels must be kept short to sustain 

acceptable ion transmission (sensitivity)

• Fast ion separation time is achieved tres ~ 35μs 

(allowing very fast E :E scanning) but peaks are 

Narrow gaps have been used to push the 

operational field limits in DMS / FAIMS but with 

penalties…

Resolution

Transmission
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(allowing very fast EC:ED scanning) but peaks are 

broadened by the tres term in the equation 

defining peak capacity 

• Also, the DII leads to significant transmission loss 

at high fields (esp. for smaller, high K0 analytes)

• Consequence is moderate resolution & reduced 

data rate (necessary to sample ion current on a 

timescale >> tres)

• Conclusion is separation device is not fully 

optimal

Effective gap width

Anisotropic diffusion



Some Quantification…

Peak width

Effective gap width
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Transmission

Anisotropic diffusion



Simply…

Comparing planar gaps 

• Narrow gap hits transmission

• High flow (short residence 

time) hits resolution (peak 

width)

IT vs Gap width 

at constant flow 

(const. Tres) 
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width)

� At geff = 35μm and flow = 

375cm3.min-1, w1/2 ~ 0.3Td (at 

1atm) and T ~ 7%

� This puts us close to the bottom 

end of the W1/2 curve which is 

good, but the ion transmission 

here is rather poor - there is 

sensitivity penalty for resolution

IT vs W½  at 

variable flow 

(variable Tres) 



Clear Solution

Wider Gaps

� Higher flow

� Greater ion transmission 

without resolution penalty

Longer channel 

Gap width (g) 35 vs.100μm

Length (l) 300 vs. 700μm

Area (A) 15 vs. 20mm2

DF range (ED/N) 350Td vs. 320Td

Res. time (tres) ~40μs vs. ~120μs
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Longer channel 

� Increased residence time

� Narrower peak without 

transmission penalty

But… 

� Need much higher voltage 

field drivers….

Narrow gap Wide gap



Waveform Analysis & Comparisons

250V

550V
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550V on 75μm gap  = 78kV.cm-1 (> 320Td at 1 atm)

<fn> nearer “optimums” for 2-harmonic 

waveform and stable at high drive voltages 
(Shvartsburg 2009)



Transmission & Resolution Comparison

For K0=1.5cm2.V-1.s-1

0.2Td

Constant flow 

(400cm3.min-1)

For K0=1.5cm2.V-1.s-1

At 150Td
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Peak width reduced by factor ~ 2 (and 

better at reduced flow)

Transmission increased by factor > 10 at 

very high fields 

For K0 = 1.5cm2.V-1.s-1

0.35Td



Experimental (Large ions up to 1.5kDalton)

35µm device 100µm device

m/z 35μm 0Td 100μm 0Td 35μm 220Td 100μm 220Td 35μm 300Td 100μm 300Td

118 10 35 1.5 7 <1 1

322 15 50 4.5 20 1.5 8

622 60 60 35 50 5 15

922 70 80 60 70 15 45

1522 80 100 35 95 20 90
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ED = 220Td ED = 220Td



What to do with it?

Ultimately we wish to explore the high 

field region more rigorously

� Effective Ion Temperature (Teff) ∝ (ED/N)2

� High field ion chemistry in both small and 

large molecules is of interest

� In small molecules (e.g. VOC sensing 
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� In small molecules (e.g. VOC sensing 

applications) the ion transmission 

spectrum holds valuable analyte 

classification information – ions fragment 

at high field

� For large molecules (in MS-hyphenated 

solutions) it is possible to exploit other Teff

dependent processes (e.g. ion 

conformational changes) to promote MS-

prefiltering EA



Interesting avenues?
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