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+ FAIMS microchips extremely resistant to Fundamental premise Resolving power and resolution for peptides Metabolite analyses - In line with theory [8], E. for many species
electrical breakdown, permit separations in By Paschen law, the breakdown field (Egg) for any gas goes up Evolution of separation properties for model peptides A major emerging FAIMS application is metabolomics. Most metabolite top out at ~80 - 90% He - the first observation
100% He and all He mixtures with any gas with decreasing gap width (g): for N, with increasing He fraction in He/N, buffers, using System | ions generated by ESI are singly charged. We look at the separation of of non-Blanc behavior for type C ions.
from ~30 kV/cm at g =2 mm to ~170 kV/cm at g = 0.035 mm [4]. Data for Syntide 2 (PLARTLSVAGLPGKK, 1508 Da), charge states z = 2 - 4 reserpine (609 Da) and lipid triacylglycerol 18:1/18:1/16:0 9Z (TAG, 859 Da) _ _
* We explored the dependences of FAIMS Hence FAIMS chips with multichannel gaps [5] of g = 35 - 100 um Mass-selected FAIMS spectra | Separ;ti on metrics: Abs. values TAG(1+)  Reserpine(1+) RelativetoN,  ® Maximum resolving power at 80 - 100% He,
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separation Parameter (Com_pensano_q f_leld’ ((:; r; %SS m zu_ghmhrlr?)r_]?-rhii%?{;f) Eslflgéi[\?/g;sn full-size” devices peak widths (Td) labeled E., peak width, resolving power, resolution o [ exceeds tha_t In N, by_~_2 - 4 imes. ;
EC)’ resolution, and resolution/sensitivity (imited by the waveform generator) is just ~35% of Eq-. 24+ 3+ 4+ Abs.values 2+ 3+ 4+ Relativeto N, Eé:O(r;aI)_(llemfl;re;itG . 25 1% o Best resolution/sensitivity balance at 80% He.
. . ) ' ] ] 0 % 2.4 ~ 0 . - 125 E . .
balance for _pep_tldes and metabolities on Therefore FAIMS microchips should allow high He fractions. CVs for 2+ '- fe but not reserpine  32°| .3 ° Effects of He similar to but weaker than those
the He fraction in He/N,, buffers across imol : i (not 3+ora+) 27 B " for full-size devices: more energetic collisions
the full composition range mplementation e hift all lecules closer to hard sph
W 057 ~859 21" 12 R
_ _ _ FAIMS microchips (Owlstone Ltd., Cambridge, UK) are etched 8 M at ~85% He = NI | 1" USRS i UISR e 8 0SS B el I o
 Evaluation involved Owlstone chips of (with 50% open surface) from silicon wafers , wired via gold vapor Eka Peak widths Tee™ s |w, | nversionof pealk order .o *Successful estimation of the difference
: 4 - P w061 = ] I NNE T means zero resolution at - . . :
g(;eneratlons |)(35 um gap) and current Il deposition, packaged, and mounted on a printed circuit board [4]. o M gﬁf;egighﬂy BLAEE S N \\\ R ~65% He. : log § between E-In N, and He Is encouraging for
100 um gap). ol 2 \ oo Maximum resolution =5 ¢ the development of predictive model for
_ S woss A[\ | i °ol T (at 100% He) is double los P . P . .
 Evolution of EC values between N2 and He _ Resolvmgbpower | e that in N, FAIMS separations using helium
can be rationalized from first principles 5% iy il vlein] "o w0 o @ wo m w @ e w e |
principlies, 2 - 4 times S S o) e Pure and mixed H, bufters should also wor
showing the path to a priori physical eature resolution o oy Behavior broadly follows that for peptides
theory for FAIMS separations A M improves by Resolving 2+ and 3 uf?e (:f er I_lloenefitli resr(])lut;on,fEl(l; for sme I\;%egies_ maximize at ~80% He, Acknowledgements
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P ol @ . Chip mounts are inserted into the ion path prior to the MS inlet ured for Tutl-size up to oU% He and sensitivity. With System 11, measured: Absolute K values that govern linear
separations depend on the buffer gas composition much _ _ g _
stronger than those using conventional (linear) IMS (heated capillary). We explored two systems: Trends for all separation metrics qualitatively track those with full-size FAIMS devices, a) melittin (2847 Da) 3+ vs. 4+ | IMS are accurately calculable from first References
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specific ion-molecule interactions on ion mobility, K [1] With Thermo MS platforms With Agilent MS platforms fill-size units between 0 and 50 % He [7]. This is because stronger fields in microchips lead 0% 70% 80% 90% design an(_:l elucm_latlon of ion geometries. L Ci?é Pr;’:Sr SB(L)J;g.Ra![O?]re;EI?ZO(())g) ObIlity Spectrometry.
(here, LTQ lon trap [6]): (here, 6538 ToF MS) to higher-energy ion-molecule scattering on the repulsive potential wall, which diminishes 20— ' | — | That was impossible for FAIMS because 5 A G, SR G
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* Mobilities measured by linear IMS can be related to ion | [95% He 1) aro 1059 009 .| 00 02 04 o 06 08 10 experiment. This agreement is
geometries by matching to computed values [3]. That | Jus Peak o . 5 e | encouraging for the construction of Career Opportunities
has not been achieved for FAIMS because high-field 5o {20 g capacity | 3+] | first-principles FAIMS theory for i - i - -
jon mobilities are much harder to model. Simplest ion- T ,, i 1ef 6.8 4+ separations in He For potential openings with the Omics Separations
molecule interactions are for He, which has helped oot Staeaas| o< Presentdata | [ | | | and Mass Spectrometry Group at PNNL, write to:
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both fundamental and analytical reasons FAIMS device in place with the control module narrows peaks, improves resolution; critical for peptide separations, Best r/s balance (maximum resolution These can be modeled a priori [8] :
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