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Abstract

Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health

conditions and can be used for fast, accurate and non-invasive diagnostics. Gas chromatog-

raphy-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited

by expert-driven data analysis that is time-consuming, subjective and may introduce errors.

We propose a machine learning-based system to perform GC-MS data analysis that

exploits deep learning pattern recognition ability to learn and automatically detect VOCs

directly from raw data, thus bypassing expert-led processing. We evaluate this new

approach on clinical samples and with four types of convolutional neural networks (CNNs):

VGG16, VGG-like, densely connected and residual CNNs. The proposed machine learning

methods showed to outperform the expert-led analysis by detecting a significantly higher

number of VOCs in just a fraction of time while maintaining high specificity. These results

suggest that the proposed novel approach can help the large-scale deployment of breath-

based diagnosis by reducing time and cost, and increasing accuracy and consistency.

Introduction

A typical human breath sample is thought to contain thousands of volatile organic compounds

(VOCs), which are the products of metabolic, catabolic and exogenous exposure processes

occurring continuously in the human body [1]. This makes breath a particularly interesting

medium for metabolomics, which describes the individuals’ specific phenotype and health sta-

tus by measuring the metabolites present in the biological sample and changes in their expres-

sions [1, 2]. Breathomics [3] (i.e., breath metabolomics) can bring insight into all the

metabolic processes in the body and thus provide comprehensive information about the

organism’s condition, additionally enabling non-invasive and rapid sample acquisition. Breath
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analysis has the potential to expand the range of diagnosis platforms for fast and accurate

detection of a disease at an early stage, or for metabolic phenotyping, and so contributing to

the development of precision medicine and treatment optimisation [3]. Due to such benefits,

breathomics is currently an extensively researched area. Over the past few years, studies have

applied breathomics for biomarker discovery and presented the relationships among the

changes in VOC patterns and different types of diseases, including chronic obstructive pulmo-

nary disease [4], diabetes [5], as well as breast [6], colorectal [7] and lung cancer [8]. Most

recently, a study by Ruszkiewicz et al. demonstrated that breath analysis may allow rapid diag-

nosis of Covid-19 [9].

Accurate detection of the VOCs present in breath, in particular biomarkers related to a spe-

cific metabolic change caused by a disease, is essential to obtain a reliable diagnosis. Gas chro-

matography-mass spectrometry (GC-MS) is a well-known analytical technology that, due to

its low limits of detection, orthogonal data structure and molecular structural characteristics,

is the gold standard for VOC measurement in breath samples [10]. The sample processed is

passed through the GC capillary column, i.e., a very narrow tube lined with a particular chemi-

cal material. Each VOC carried in the sample elutes from the GC column after a specific

amount of time, called retention time (RT), related to its chemical and physical properties but

also dependent on the GC column features. That results in a separation of the compounds con-

tained in the mixture of the sample. Subsequently, each eluted VOC is characterised in MS by

a mass spectrum (mass-to-charge ratio, m/z) of its ion fragmentation. As different VOCs pro-

duce different ion fragmentation patterns, an ion pattern enables the identification of the

VOC. GC-MS produces a two-dimensional data matrix, known as abundance matrix [11],

such as the one shown in Fig 1c. Each column of the abundance matrix represents one ion

channel m/z, whereas each row contains a mass spectrum delivered at a specific RT. GC-MS

data is also often visualised compactly as total ion current (TIC) chromatogram (Fig 1b). For

more details on GC-MS data, we refer readers to [12].

Deriving a comprehensive and reliable list of VOCs detected in GC-MS breath data is a dif-

ficult task. The VOC separation in GC may not fully occur, resulting in an overlapping of co-

eluted compounds (i.e., peaks on a chromatogram, Fig 1b), or the ion patterns produced in

MS by some VOCs may be similar and thus difficult to distinguish. Moreover, a GC column

degrades over time changing instrumentation features and thus causes RT shifts, which signifi-

cantly reduce the reliability of this parameter in VOC identification and requires its conversion

into a system-independent constant (i.e., retention index) [13]. Additionally, the data pro-

duced by GC-MS are noisy and high dimensional: one single sample may contain over 9 mil-

lion variables (in our study over 22500 RT points by 411 m/z channels).

For such complexity, the current breathomics workflow for GC-MS metabolic phenotyping

employs various preprocessing steps performed by a trained and experienced chemical analyst.

At the core of these operations is a spectral deconvolution, i.e., an extraction of the overlapping

co-eluted VOCs along with their mass spectra prints [14]. The GC-MS breath data analysis

(Fig 2, top) includes baseline correction, spectral deconvolution, peak detection and feature

alignment. These steps collectively enable the clustering and identification of the VOCs [15]

for further multivariate statistical analysis [1, 16]. These processes are subject to high variabil-

ity. Usually, 350 to 500 VOCs are detected in the sample. The dynamic range of the variables

may span 104 to 105 and some of the spectra for the lower abundance VOCs may be incom-

plete with minor ion fragments below the limits of detection. Variations in exogenous factors

mean that different deconvolution approaches may need to be invoked from sample-to-sam-

ple. Current state-of-the-art deconvolution-based breathomics methods require analytical

expertise and skilled analyst judgement to choose the techniques and parameters settings for

processing the data from every sample. In particular, the optimisation of deconvolution needs
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Fig 1. GC-MS breath data. (a) A full mass spectrum corresponds to each retention time (RT) point on the

chromatogram. (b) The total ion current (TIC) chromatogram plots along the RT dimension the cumulative

abundance of ions (intensity). Each peak generally represents one specific VOC, although superposition of peaks also

occurs [1]. (c) GC-MS abundance matrix presented as a heat map, with the x-axis being the mass-to-charge ratio (m/z)

and the y-axis the retention time.

https://doi.org/10.1371/journal.pone.0265399.g001
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to strike the right balance between the inclusion of all the relevant VOCs and the omission of

spectral noise and signal artefacts. The operator-subjective nature of the GC-MS data process-

ing, combined with the data complexity, has the potential to introduce errors and variability to

results on top of the observed biological variations from one subject to another, and thus the

results may not be reproducible [17]. Additionally, expert-operated deconvolution is often

labour-intensive time-consuming procedure [18]; the processing time of a single breath sam-

ple is estimated by experts as 60 to 120 minutes.

The limitations outlined above call for better algorithms for GC-MS data processing, now

possible by exploiting recent advances in machine learning and deep learning. A number of

machine learning and deep learning applications in biomedical studies have been reported in

the literature [19, 20]. Several studies, such as [4, 7, 21], successfully applied machine learning

in the area of breathomics. These reported applications, however, do not process GC-MS

breath data directly but analyse a list of selected VOCs, provided by expert-led preprocessing,

to classify patients and control group. Consequently, they allow for high-level GC-MS data

classification by black-box like decisions without justifications, rather than detection of partic-

ular VOCs of interest. Thus, these methods provide limited information about individual’s

metabolomics condition. Moreover, such data processing (e.g., [4, 7, 21]) involves treating an

Fig 2. Graphical representation of the current GC-MS state-of-the-art analysis process (grey area) and the novel CNN-based method, stage 1 and

stage 2. Both methods require GC-MS data storage (left column) and provide a list of VOCs as output.

https://doi.org/10.1371/journal.pone.0265399.g002
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entire GC-MS sample as a single data point; in the case of clinical samples, obtaining large-

scale datasets desired for machine learning applications may be a challenging and demanding

task. On the other hand, to the best of the authors’ knowledge, there is a lack of studies apply-

ing machine learning directly on raw GC-MS breath data to detect VOCs of interest.

This study introduces a new approach to VOC detection in GC-MS samples: we propose

the application of convolutional neural networks (CNNs) [22] to learn to detect VOCs in

breath sample automatically and directly from raw GC-MS data, thereby bypassing the current

labour-intensive, time-consuming and operator-subjective data preprocessing steps. CNNs

[23] are a popular type of deep learning algorithms that is particularly effective in image analy-

sis (e.g., [24–26]). CNNs can autonomously learn useful features directly from low-level data,

e.g., pixels [27], and construct high-level features without human intervention. CNNs can also

exploit geometrical properties of the data and thus adapt well to image-based tasks [28]. Pre-

senting GC-MS data as abundance matrix enables one to see GC-MS data as an image (Fig 1c).

Therefore, we propose a new approach, exploiting recent advancement in CNN applications

for image analysis and pattern recognition, to learn to recognise ion patterns directly from raw

abundance matrix. Ion patterns derived from specific compounds, although noisy, present

unique features that distinguish them. A recognised ion pattern is effectively a recognised

VOC, which in turn could be a biomarker of a given physical condition [29].

The promise of such an approach was first demonstrated in [30]. In that study, CNNs were

shown to have considerably better performance than support vector machines [31] and shal-

low neural networks [32]. However, the study reported a high number of false positives and

targeted only 8 VOCs, thus leaving open the question of reliability in detection and scalability.

Nevertheless, the findings from [30] justify the application of CNN over shallow methods in

the considered problem.

The CNN-based approach proposed here has two main stages (Fig 2, bottom); stage 1: data

and CNN model preparation, and stage 2: raw GC-MS samples analysis. In stage 1, expert

knowledge is exploited to create a dataset of target VOCs and their corresponding ion patterns

on the raw GC-MS data. A CNN architecture is then trained on such dataset to learn to recog-

nise ion patterns specific to the target VOCs. In stage 2, new raw breath samples are analysed

to detect the targeted VOCs quickly and automatically. Firstly (in phase A, Fig 2), an entire

GC-MS sample is scanned by the trained CNN network to provide a list of recognised patterns.

Secondly (in phase B), domain-specific constraints are used to derive a final list of detected

VOCs.

The robustness and scalability of the proposed CNN-based method were investigated on a

dataset of 120 GC-MS samples and the set of 30 target VOCs. A wide range of target com-

pounds generates various challenges: several target VOCs produce similar ion fragmentation

patterns, some others have close RT positions and thus overlap, which may provide an obstacle

to their accurate discrimination. In this study we tested different types of CNNs: VGG16 and

VGG-like networks [33], residual neural networks [34] and densely connected convolutional

networks [35] with different configurations, to compare their performance and select the most

efficient strategy for GC-MS data processing.

The novel CNN-based approach proposed here provides a comprehensive system for fast

and automated detection of any set of VOCs in raw GC-MS data, outperforming current

expert-led deconvolution-based methods. The analysis of raw GC-MS breath data may reduce

human-related errors and has the potential to detect compounds of very low abundances. Con-

sequently, the proposed novel approach showed the ability to correctly detect VOCs missed by

the current methods, while improving specificity and significantly reducing processing time.

The system may support experts to put much more accurate hypotheses on the VOCs related

to the specific health conditions. Moreover, by the significant acceleration of the VOC
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detection process, the CNN-based method allows for much quicker hypotheses validation on

new GC-MS samples. To the best of the authors’ knowledge, this is the first study that proposes

a comprehensive system to reveal VOC ion patterns directly from raw GC-MS samples, with

high sensitivity and specificity.

Results

GC-MS sample dataset

Breath samples were obtained in a clinical study from 25 participants with different types of

cancer receiving radiotherapy treatment. Four breath samples (prior and 1, 3, and 6 hours post

radiation) were collected from each participant along with one environmental sample.

Each clinical sample was processed with GC-MS and stored in a data file containing both

metadata and the abundance matrix A 2 RR�411
, where 411 is the number of measured m/z

channels and R is the number of the mass spectrum measurements performed over retention

time. As the instrumental scanning rate was approximately 6.25 Hz, for about one-hour pro-

cessing it gave approximately 22500 RT points of measurements. The first dimension of the

abundance matrix A is called here the RT dimension, whereas the second one is called m/z
dimension. Subsequently, all GC-MS data were processed with the current expert-led methods

to identify VOCs contained in the sample and their RT positions. This process was completed

for 120 clinical samples (see Methods).

The GC-MS sample dataset was divided into training and testing sets in the proportion 82/

38: the training set contains 65 breath samples and 17 environmental samples associated with

17 randomly chosen participants, the testing set contains 30 breath samples and 8 environ-

mental samples associated with remaining 8 participants. Both raw and expert-processed

GC-MS samples from the training set were used to generate a VOC dataset (described later).

The VOC dataset was applied in stage 1 (Fig 2) for the CNN model training, selected through

cross-validation (CV) [36]. The testing GC-MS sample set was used for the assessment of the

proposed CNN-based system performance. Precisely, the 38 raw samples from the testing set

were used as inputs for automated VOC detection in stage 2, whereas their expert-processed

equivalents made a ground truth for the system evaluation. Fig 3 shows the sample and data

flow through the study.

Target VOCs

A set of 30 target VOCs (Table 1) was designed to contain compounds commonly found in the

breath, including alkanes, aldehydes, ketones, furans and siloxanes and sulfur-containing com-

pounds [15]. The confidence in the expert-led identification process for these VOCs varies

according to potential confounding factors. In particular, confounding factors include low

concentrations of a VOC in a sample, which results in a low signal-to-noise ratio in GC-MS

data. Propionic acid is an example of a target VOC reporting relatively low concentration in

the clinical samples from the dataset. Other confounding factors are mass spectra overlapping

caused by the co-elution of VOCs from the GC column, and the similar mass spectra among

VOCs. For example, Octane and Hexanal frequently overlap, additionally sharing three of the

five top ions. What is more, octane produces highly similar mass spectrum profiles as another

target VOC—2,4-dimethylheptane. These VOCs also elute at a relatively close RT locations

and thus may be difficult to differentiate with the current expert-led processing [15]. As a con-

sequence of the abovementioned challenges, the process of expert-led VOC identification can-

not be guaranteed to be error-free, resulting in a possibly noisy-labelled VOC dataset (stage 1)

and ground truth (stage 2). The S1 Table in S1 File provides, for each target VOC, the details
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of its ion pattern, mean RT location and mean concentration in GC-MS sample dataset, and a

number of VOC instances reported respectively in breath and environmental samples.

VOC dataset

The proposed CNN-based approach relies on the construction of a dataset of target VOC pat-

terns, derived from raw GC-MS samples for the network training. Each VOC appears on the

TIC chromatogram (Fig 1b) as one peak (sometimes overlapped) over a small segment of RT

Fig 3. Sample and data flow through the study.

https://doi.org/10.1371/journal.pone.0265399.g003
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axis, corresponding to a specific range of retention times when the VOC was eluting from the

GC column. A sub-matrix of abundance matrix A, encompassing such an RT range, contains

the ion pattern for that specific VOC. Thus, we defined a VOC data point as a matrix

ŝ 2 Rd�411
, where the retention time window size was selected as δ = 80 (see Methods).

Data points corresponding to all target VOC instances, previously identified by expert-led

processing in the training GC-MS samples, were extracted to form the labelled VOC dataset

for network training. In addition to data points representing target VOCs, a negative class of

data points was created from randomly chosen sub-matrices ŝ of A that did not contain target

VOCs. The size of the negative class was selected as equal to the total number of the data points

representing the target VOCs, i.e., as half of the generated dataset. It was motivated by the

compromise between significant unbalance in the VOC dataset (whether all the negative

examples appearing in the training GC-MS samples would be included) and coverage of a

wide variety of ion patterns that the negative class represents. In total, from the 82 training

GC-MS samples, 3,736 VOC data points were extracted with a minimum of 22 and a maxi-

mum of 82 data points in each class of target compounds (S1 Table in S1 File). Fig 4 shows

examples of VOC data points extracted from raw GC-MS data.

Data augmentation and normalisation

Data augmentation, i.e., methods for enlargement of the dataset by insertion of unobserved

data examples [37], is known to benefit machine learning models where data points are scarce

[37]. Often these new examples are constructed from the observed ones, by the introduction of

some variations to data points, which do not change their underlying distribution (here, VOC

ion patterns) and classes.

Data augmentation was applied to the VOC dataset to increase the robustness of the train-

ing. We introduced two methods for VOC dataset augmentation: translation along RT and

intensity variation (see Methods). Combined collectively, these two methods generated 100

Table 1. List of the target VOCs with class labels in the elution order.

Label Target compound Label Target compound

0 Negative class 16 Heptanal�

1 Ethanol 17 Benzaldehyde

2 Dimethyl sulfide 18 Benzonitrile

3 2-Methylfuran 19 Octanal�

4 Trichloromethane-d 20 Limonene

5 Benzene 21 2-Ethylhexanol

6 Propionic acid� 22 Nonanal

7 Dimethyl disulfide 23 Dodecane

8 Toluene-D8 24 Decanal�

9 Toluene 25 2-Phenoxyethanol

10 3-Methylthiophene 26 Phthalic acid��

11 Octane�� 27 Tetradecane

12 Hexanal�� 28 1,4-Diacetylbenzene

13 2,4-Dimethylheptane 29 3,3,6,6-Tetraphenyl-1,2,4,5-tetroxane�

14 2,4-Dimethyl-1-heptene 30 2,5-Diphenyl-1,4-benzoquinone

15 3-Heptanone

The frames indicate pairs of overlapping compounds. Compounds of relatively low concentrations are marked with � and ��: Mean EIC-Area� �103�Mean EIC-Area��

�Q1 (first quartile); see S1 Table in S1 File.

https://doi.org/10.1371/journal.pone.0265399.t001
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variations for each VOC data point, resulting in the fully-augmented dataset of 373,600

VOC data points. To test the impact of the proposed augmentation methods and select the

most efficient approach for network training, we compared the performance achieved on the

fully-augmented dataset, partially-augmented dataset (after translation along RT only) and

original VOC dataset. The intensity values in each data point were normalised in the range

[0, 1].

Deep learning models

We assessed the learning and inference capabilities of the following recently developed deep

CNN architectures, which achieved state-of-the-art performance in several image classification

challenges: VGG16 [33], residual CNNs (ResNets) [34] and densely connected CNNs (Dense-

Nets) [35]. We also tested smaller VGG-like networks with 4, 6 and 8 layers.

Along the m/z axis the values of a GC-MS abundance matrix are spatially only weakly corre-

lated, as opposed to the data typically used in image-based tasks. Therefore, we tested the effec-

tiveness of 1D filters (see Methods) and compared them with typically used 2D filters to

investigate the suitability of such a network variation to capture the specific nature of correla-

tion in GC-MS data. The details on tested CNN architectures, their implementations as well as

parameters settings are given in S3.1-S3.11 Tables in S1 File.

CNN model training

To evaluate the CNN models’ ability to learn ion patterns from the VOC dataset, and to select

the best-performing configurations of the networks, five-fold cross-validation (CV) was

applied. CV is a common technique used for model assessment and hyperparameter selection

[36]. Each split of the VOC dataset for CV was performed at the level of participant.

Fig 4. Examples of the VOC data points extracted from the raw GC-MS abundance matrices. Left, from top: three

examples of Benzene, three examples of Benzaldehyde; right, from top: three examples of Trichloromethane-d and

three example data points from the negative class. For better visualisation, the segments were mapped to RGB format.

https://doi.org/10.1371/journal.pone.0265399.g004
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Table 2 presents the classification performance of the models in the CV stage. All tested

models achieved high accuracy (i.e., a proportion of data points for which the network label

matched the ground truth), which confirms that ion patterns can be learned by CNNs from

VOC data points derived directly from raw GC-MS data. The results also validate the

hypothesis that 1D filters are more effective than standard 2D filters. Among the tested aug-

mentation strategies, the best models’ performances were obtained with the fully-augmented

dataset. Shallower architectures, i.e., VGG-like, performed no worse than other deeper net-

works. The VGG-like network with 8 layers and 1D filters (VGG-8–1D) reported the highest

accuracy.

The best performing hyperparameter configuration for each investigated CNN architecture

type, i.e., VGG-8–1D, DenseNet-40–1D and ResNet-34–1D, was used to create the system for

automated VOC detection in raw GC-MS samples (Fig 2, stage 2). Before the deployment to

stage 2, the models were retrained on the entire, fully-augmented VOC dataset. S8 Fig in S1

File shows a learning curve for VGG-8–1D model.

Automated samples analysis and VOC detection

The trained networks were employed in stage 2 (Fig 2) to analyse the 38 raw GC-MS samples

from the testing set. The proposed stage 2 analysis was composed of two phases: (A) scanning

of each clinical sample with the network; (B) identification of VOC detections from the scan

results.

Phase A—Scanning of a breath sample. The abundance matrix A of a clinical sample was

scanned along the RT dimension. Precisely, the network was fed consecutive normalised sub-

matrices si 2 R
d�411 of A, starting at retention point i (for each i in the RT dimension for that

sample). Phase A classifies each si into one of the 31 possible classes. Thus, scanning a single

GC-MS sample required approximately 22500 queries of the network. The output of the pro-

cess are two sequences: a sequence LA that contained approximately 22500 class labels, and a

sequence TA that contained the classification confidence given by the network for each respec-

tive label (see Methods).

Phase B—VOC detection. To obtain a list of target VOCs detected in each clinical

GC-MS sample, the pair of phase A output vectors for that sample was analysed. The following

general properties of the GC-MS samples are considered in the phase B analysis:

Table 2. Five-fold cross-validation (CV) performance achieved by tested CNN models on the VOC dataset. (Model VGG16 with 1D filters has not been tested due to

its extensive demand for memory resources).

CV accuracy: mean (± sth) %

Model Depth Filters Fully-aug. Partially-aug. Original data

VGG-like 4 1D 97.16 (±0.82) 96.89 (±0.65) 94.60 (±1.02)

VGG-like 4 2D 97.13 (±0.92) 96.48 (±0.89) 93.89 (±1.06)

VGG-like 6 1D 97.60 (±1.08) 97.43 (±0.78) 94.75 (±1.11)

VGG-like 6 2D 97.37 (±0.95) 96.69 (±0.79) 93.73 (±1.12)

VGG-like 8 1D 98.06 (±0.38) 97.83 (±0.38) 94.51 (±1.43)

VGG-like 8 2D 97.34 (±0.94) 96.89 (±1.03) 88.11 (±1.62)

VGG16 16 2D 97.89 (±0.47) 97.68 (±0.40) 96.14 (±1.63)

DenseNet 40 1D 97.34 (±1.18) 96.51 (±1.67) 94.55 (±2.69)

DenseNet 40 2D 96.73 (±0.82) 95.92 (±1.98) 69.98 (±1.96)

ResNet 34 1D 97.71 (±0.68) 97.64 (±0.45) 94.26 (±2.50)

ResNet 34 2D 97.25 (±0.88) 96.98 (±0.67) 92.84 (±1.53)

https://doi.org/10.1371/journal.pone.0265399.t002
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(i). Along the RT dimension, a VOC is measured multiple times consecutively for the dura-

tion of the VOC elution (typically about 6 seconds).

(ii). The order of elution of VOCs from the GC column is usually constant across different

samples, as indicated in Table 1.

(iii). Each VOC elutes from the GC column only once in a GC-MS process.

According to (i), a detection dj 2 DA was defined as a consecutive sub-sequence of LA of

length at least γ with constant label values j (duration rule, see Methods). Subsequently, accord-

ing to (ii), the system ignored detections that were far from the expected order (order rule),
giving a set ~DA � DA. Finally, according to (iii), if multiple detections of one VOC occurred in

any sample, the system selected the one with the highest detection confidence, derived from TA,

expressing the confidence of the model in such detection (uniqueness rule); a set� DA �
~DA.

As a result, for each abundance matrix A, stage 2 delivered a list of detected VOCs along

with their location along the RT axis and the detection confidence. A graphical representation

of the output is provided in Fig 5.

Fig 5. Example output from clinical sample scanning for VOC detection (stage 2) with a CNN-based system, range between 9.5

and 11.5 minutes; sample Test-01-BS01, model VGG-8–1D (S4.2.1 Table in S1 File). Top: VOCs detected by the system in this RT
range, visualised on the TIC chromatogram. Bottom: Table of detected VOCs along with their RT positions and detection

confidences.

https://doi.org/10.1371/journal.pone.0265399.g005
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Evaluation of the automated sample analysis and VOC detection

The performance of the system was assessed with two approaches: (1) including both the VOC

localisation (along RT dimension) and its classification; and additionally, to report the system

specificity, (2) including only the VOC presence in a sample.

(1)—VOC localisation and classification. VOC detection involves both localisation of

the compound in the GC-MS sample and its classification. Therefore, each VOC detection in a

sample was identified as a true positive (TP) if there was matching in both label and RT posi-

tion with the ground truth for that sample, and as a false positive otherwise. Similarly, if a spe-

cific target VOC was not detected at the RT position reported by the ground truth, it was

identified as a false negative. Note that a retention time window of any size in which the system

and the expert both did not identify any target VOC could be considered as a true negative:

therefore true negatives were not measured here.

System-derived ground truth corrections. To gain further insight on the results, we examined

all the detections d̂ j 2 DA (i.e., before applying order and uniqueness rules) that were not

reported in the ground truth or had mismatching RT positions. The range of retention times

in the ground truth was calculated for each VOC (see Methods). We observed that in most

cases, the detection d̂ j was reported by the system in the expected (compatible) narrow RT
range, characteristic for that VOC j. The upper bound probability of a random false positive

detection occurring within a precise and restricted RT range was calculated as 4% (see Meth-

ods). Accordingly, it is highly likely that such false positive is actually a true positive and reveals

an error in the (noisy-labelled) ground truth, i.e., a VOC occurrence missed in the expert-led

analysis. False positives with a compatible RT value (i.e., characteristic for that specific VOC

detected) were named tentative true positives (TTP), whereas false positives that are not TTP

are called certain false positives (FP); see Fig 6.

In some cases, the VOCs detected by the system and identified as TTP were, in fact,

reported by the ground truth, but at different RT positions (Fig 6). Accepting the high chance

of tentative true positives to be true positives and the constraints that a VOC appears only

once in a sample, the corresponding false negatives at the RT positions reported by the expert

were identified as tentative true negatives (TTN). Note that only FN with respective TTP were

verified; in fact, more examples identified as FN may be correctly not detected by the system.

False negatives that were not TTN were called semi-certain false negatives (FN). Further details

on the concepts of tentative true and false positives, and certain and semi-certain false positives

are provided in the Methods.

Table 3 reports the performance achieved on the testing set by the system with different

CNN models. Additionally, the result intersection, i.e. detections consistent (in terms of label

and RT) among all the models, was evaluated. Results are presented in two forms: according to

the expert-derived ground truth and according to the system-derived corrections. The total

quantities of TP, TTP, FP (certain), FN (semi-certain) and TTN across all samples are given.

We report the system sensitivity and mean average precision score (mAP), which is an evalua-

tion metric commonly used in the object detection domain [38] (see Method). Fig 6 shows a

graphical example, in which TP, TTP, FN and TTN were identified.

(2)—VOC presence. To compute the system’s specificity, we considered only the question

of the presence of each VOC in each sample and ignore its RT position. Since each VOC may

appear in a sample at most once, such an approach leads to a binary classification problem.

True negatives (TN)were thus well defined here as VOCs not detected in a sample by both the

system and the expert-led processing. False positives were defined as VOCs detected by the

system and not reported by the ground truth. In particular, this definition is different than
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Fig 6. An evaluation of the results of a GC-MS sample scanning for VOC detection (stage 2) with the CNN-based system, range

between 6 and 12 minutes; sample Test-04-BS01, model VGG-8–1D (S4.2.16 Table in S1 File). (a) VOCs detected by the system

presented on total ion current (TIC) chromatogram and marked accordingly to the outcome of the evaluation. VOCs 11, 12, 13 and 17

detected alike by the system and the ground truth, true positives. VOC 14 reported by the ground truth and not detected by the system,

false negative. VOC 15 not reported by the ground truth, but detected by the system in compatible RT range, tentative true positive.

VOC 16 not detected by the system on the position reported by the ground truth, but detected on a different position within its RT

range, tentative true negative and tentative true positive. (b) VOCs reported by the (noisy-labelled) ground truth presented on TIC

chromatogram. (c) RT ranges specific for the VOCs, derived from the ground truth. Black dots indicate the exact RT positions of VOCs

in the ground truth. Note that VOC 16 is reported by the ground truth at RT position being an outlier for the RT range of this

compound.

https://doi.org/10.1371/journal.pone.0265399.g006
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above, i.e., in (1) false positives covered also VOCs reported by both the system and the expert

but at different RT positions.

System-derived ground truth corrections. Similarly as above, false positives reported in their

respective RT ranges were identified as tentative true positives (TTP�), false positives that were

not TTP were called certain false positives (FP�).

Table 4 reports the system specificity in the analysis of the 38 clinical samples from the test-

ing set. Results are presented according to the expert-derived ground truth and according to

the system-derived corrections. The total quantities of TN, FP� (certain), TTP� across all sam-

ples are given along with the system specificity. The full tables of detections for each CNN

model and their intersection, presented per each target VOC and per each testing sample, are

reported in S4.1–7.2 Tables in S1 File.

Discussion

The results show that all tested system configurations, with various CNN models employed,

achieved high performance in the detection of target VOCs in the clinical samples, reporting

high sensitivity and specificity (when admitting the noisy-labelled ground truth). The results

demonstrate that ion patterns can be effectively learnt directly from the raw GC-MS data. The

Table 3. Evaluation (1) of the results of stage 2 analysis of testing GC-MS samples.

Classification Benchmark Metrics

Model TP TTP FP TTN FN sensitivity mAP

VGG-8–1D 816 226 2 18 11 expert 0.9657 0.9019

system-derived correction 0.9896 0.9894

DenseNet-40–1D 808 181 6 15 22 expert 0.9562 0.93

system-derived correction 0.9782 0.9994

ResNet-34–1D 804 187 9 14 27 expert 0.9515 0.9282

system-derived correction 0.9735 0.998

Intersection 787 138 1 8 49 expert 0.9325 0.9398

system-derived correction 0.9497 1

Benchmarks: expert-derived ground truth (yellow) [tentative true positives (TTP) are considered FP, tentative true negatives (TTN) are considered FN]; system-derived

correction (green) [tentative true positives (TTP) are considered TP, tentative true negatives (TTN) are considered TN].

https://doi.org/10.1371/journal.pone.0265399.t003

Table 4. Evaluation (2) of the results of stage 2 analysis of testing GC-MS samples.

Classification Benchmark Metric

Model TN FP� TTP� specificity

VGG-8–1D 86 1 208 expert 0.2915

system-derived correction 0.9885

DenseNet-40–1D 125 4 166 expert 0.4237

system-derived correction 0.969

ResNet-34–1D 116 6 173 expert 0.3932

system-derived correction 0.9508

Intersection 165 0 130 expert 0.5593

system-derived correction 1

Benchmarks: expert-derived ground truth (yellow) [tentative true positives (TTP�) are considered FP�]; system-derived correction (green) [tentative true positives

(TTP�) are considered TP].

https://doi.org/10.1371/journal.pone.0265399.t004
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problem of VOC detection includes various challenges such as detecting VOCs of low intensi-

ties and distinguishing overlapping VOCs and those with similar ion patterns (Table 1). Nev-

ertheless, the system performed comparably well for all 30 VOCs from the dataset (S4.1, S5.1,

S6.1 Tables in S1 File). Consequently, we claim that the CNN-based system proposed here

allows bypassing time-consuming and labour-intensive expert-led data processing in real-

world GC-MS data targeted analysis.

We found strong evidence thatthe proposed CNN-based system may outperform human

experts. In our tests, the system detected 17% to 23% more occurrences of the VOCs than

expert-led deconvolution-based method (TTP, Table 3). As much as 138 TTP were reported

by each of the tested models. Additionally, the system did reveal possible errors, i.e., incorrectly

labelled VOCs (TTN). There are two possible reasons to explain the CNN-based system out-

performance over the current expert-led processing. The current method involves complex

preprocessing steps, based on the operator-subjective spectral deconvolution [17]. The pro-

posed system instead analyses raw GC-MS data and thus bypasses multiple steps and possibly

suboptimal choices of parameters. Another reason why the proposed workflow delivers more

VOC detections may be its potential to detect compounds of low intensities. Additional analy-

sis of the results (S1, S3.1, S4.1, S5.1 Tables in S1 File) showed indeed that over 50% of TTP

(for VGG-8–1D; over 40% for rest of the models) were reported by 25% of target VOCs with

the lowest average concentration (Table 1). Most TTP, 27, were reported for Propanoic acid

(VOC 6), a compound of low concentration. Interestingly, before augmentation, the VOC

dataset had only 22 training examples of VOC 6. Despite that, the CNN-based system was able

to detect this compound correctly: none FP and FN reported, all 27 TTP reported by all the

models. In our tests, the proposed system improves on the state-of-the-art performance of the

current deconvolution-based process.

The proposed CNN-based system requires expert knowledge to be trained (stage 1), but

consequently, it can detect VOCs autonomously and significantly faster than a human-driven

procedure. The training stage in the proposed approach, requiring about 23 to 80 hours

(depending on the CNN model), has to be performed only once to be able to scan new samples

at a rate of as low as just around 2 minutes per sample (see Table 5 in Methods). Interestingly,

the fastest among the tested architectures, i.e., VGG-8–1D, is also the one with the highest sen-

sitivity. Consequently, the proposed system may support experts in much faster validation of

hypotheses regarding compounds related to specific health conditions on new GC-MS sam-

ples. What is more, those hypotheses may be more accurate due to the system’s ability to pro-

vide a more comprehensive list of VOCs than the deconvolution-based methods.

Very deep networks are often thought to have more discrimination capabilities than shal-

lower ones, but in this application, the VGG-like networks with reduced depth performed no

worse than other very deep models (Table 2). This suggests that the detection and classification

of VOC ion patterns can be effectively performed with modest-depth networks, which are also

less resource-intensive. All tested networks achieved higher performance when implemented

with 1D filters, adapted to the nature of GC-MS data.

The proposed CNN-based approach provides specific information on individual VOCs in

breath for further analysis and diagnosis, rather than a high-level sample classification (e.g., [4,

7, 21]). As opposed to black-box and end-to-end machine learning diagnostic systems, the pro-

posed system quickly produces accurate lists of VOCs, thus enabling a transparent and

explainable pipeline for breathomics-based diagnosis. This approach avoids the common

problem of having limited datasets of clinical samples: each of many target VOC occurrences

in a sample makes a data point; in this study, 82 clinical samples and 30 target VOCs resulted

in a dataset with 3,736 unique data points and 373,600 augmented data points.
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The proposed system does not use RT values, which are a major source of variation among

measurements with different instruments (or even the same instrument but on different days).

Instead, the proposed system analyses the patterns of the VOCs, which remain substantially

the same when are processed with similar instruments, in terms of type and properties such as

resolution [29]. Therefore, the CNN-based system may be transferable to data obtained from

another GC-MS instrument than the one from which the training dataset originates. Further

tests are required to assess such proprietary precisely.

The proposed approach exploits GC-MS general properties and thus potentially extends

beyond breath data. Further studies may extend tests to GC-MS data from a large variety of

domains, e.g.: detection of CBRN (chemical, biological, radiological, nuclear) biomarkers in

breath, saliva and skin for casualty triage [39]; tracking organic pollutants in water for environ-

ment monitoring [40]; detection of accelerants in fire debris for criminal forensics [41]; detect-

ing drug ingredients in urine samples for law enforcement or sports anti-doping analysis [42,

43]; analysis of chemical composition of the planets’ atmosphere in astrochemistry [44]; as

well as in chemical engineering [45], food, beverage and perfume analysis [46–48] and medi-

cine [8].

The proposed new approach to GC-MS data analysis, exploiting the application of deep

learning, has the potential for extensive development in the future. Increasing breath analysis

as a diagnostic technology will also increase the number of available GC-MS datasets: a larger

number of VOC patterns, reflecting more of the possible variations in the data points, may

benefit the accuracy of deep neural network training. The use of GPU computing and dedi-

cated hardware can help process the large amount of data collected through GC-MS; addition-

ally, its rapid development, seen in recent years, may reduce the processing time even further.

Future studies can extend the proposed CNN-based approach to also measure VOC intensi-

ties. The proposed system is currently limited to detecting the presence of VOCs of interest,

but not their abundances. However, in real life scenarios, additional analysis by experts to

determine peaks intensities and then concentrations of particular VOCs, e.g., biomarkers

related to a specific disease, may become necessary only if the system reveals their presence in

a sample. In fact, as a result, the proposed workflow delivers along with a list of detected VOCs

their RT positions in the sample, which can significantly facilitate and accelerate the quantifi-

cation of the compounds.

In summary, the proposed CNN-based system delivers a faster, more accurate and scalable

method for automated targeted analysis of raw GC-MS data than the current state-of-the-art

expert-led processing. The proposed approach has a significant potential to contribute to the

development of breath analysis as a diagnostic platform to detect various diseases quickly, effi-

ciently, and reliably.

Methods

Ethical approval

The study was approved by the South East Scotland Research Ethics Committee 01 (16/SS/

0059) and all clinical staff were trained, and proficiency tested for breath analysis prior to the

start of patient recruitment. Informed and written consent was given by all participants.

Breath sample collection

Breath samples were collected from 25 participants before and after radiotherapy at 1, 3, and 6

hr. A Respiration Collector for In Vitro Analysis ReCIVA™ device (Owlstone Medical, Cam-

bridge, UK) was used for the breath samples collection. Clean air was provided from room-air

filtered with an activated-carbon scrubber and HEPA filter, at a flow of 35 dm3 min−1. (The
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air-supply unit was built and tested by the Centre for Analytical Science, Loughborough, UK).

The total sample volume of breath was set to 1000 cm3 with a sampling duration cap of 900 s.

Tenax1/Carbotrap 1TD hydrophobic adsorbent tube (Markes International Ltd, Llantrisant,

UK) was used. All materials were conditioned and sterilised before use to reduce exogenous

VOC artefacts. clinical staff were trained and proficiency-tested prior to clinical breath sam-

pling. Environmental and air-supply samples were collected with each set of breath samples.

Samples were sealed and stored at ca. 4˚C immediately after collection and transported to

Loughborough Centre for Analytical Science within 48 hr [49]. Samples were dry-purged on

receipt with a 120 cm3 of purified nitrogen at a flow rate of 60 cm3 min−1. Toluene-D8 (0.069

ng) and trichloromethane-d (0.28 ng) internal standards were spiked into the sample during

the dry-purge process using a six-port valve. All samples were then sealed and stored at 4˚C

prior to analysis.

GC-MS processing of clinical samples

Thermal desorption (Unity-2, Markes International) interfaced to a GC (Agilent, 7890A) cou-

pled to a quadrupole mass spectrometer (Agilent, MS 5977A) was used for the analysis of all

clinical samples, see S9 Table in S1 File for operating details. The ion channels from 40 m/z to

450 m/z were measured with unit resolution. The instrumental scanning rate was approxi-

mately 6.25 Hz, which for about one-hour processing gave approximately 22500 RT points.

The size of the derived abundance matrix of each sample is R × 411, where R� 22500.

The samples were analysed over a year period (Sep 2016—Sep 2017) as part of a wider

multi-centre clinical study campaign. Instruments were serviced whenever statistical process

controls indicated a z-score>3 or more than 3 consecutive z-scores >2. The frequency of the

service interventions was determined by the quality and contamination levels of the samples

returned from the clinics. The column was replaced once during this phase of the campaign, in

March 2017.

Abundance matrix

For each sample, GC-MS processing produces an abundance matrix A 2 RR�411
(see S2 Fig in

S1 File for an example). Let zi 2 R
411

, i = 1, . . ., R be mass spectrum (i.e., intensities across con-

secutive ion channels derived by MS) at particular retention time points ri, i.e.:

A ¼

z1

..

.

zR

2

6
6
4

3

7
7
5:

For each ion channel zi its corresponding RT point ri is specified by the function RT :

RT : zi ! ri 2 R
þ:

Expert-led GC-MS data processing

GC-MS data denoising and baseline correction and feature deconvolution were carried out

(AnalyzerPro Spectral Works, UK) by a highly-qualified and experienced chemical analyst. As

a result, 350 to 500 VOC features per sample were recorded. Features were aligned to correct

for retention time variation, and the VOCCluster algorithm [15] was used to cluster all features

into groups. Each feature was assigned an identifier in the format: BRI—m/z1 m/z2 . . . m/zn.

BRI indicated the retention index for the VOC breath feature and m/z1. . .m/zn are the nominal
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masses of the ion-fragments in decreasing order of abundance needed to uniquely define the

feature. The processing time of a single breath sample is estimated as 60 to 120 minutes.

To produce the ground truth for this study, this process delivered a list of VOCs with Level

2 chemical identification [50] and their corresponding positions in the matrix of raw data, this

is startRT, peakRT (denoted also as RT) and endRT—the indexes along the retention time

where the compound was measured to start, peak and end the release from the GC column.

The process was not completed for 5 breath samples for technical issues, resulting in 120

expert-processed GC-MS samples.

VOC dataset structure

The VOC dataset was extracted from the abundance matrices of the 82 samples from the train-

ing set, using the ground truth for the 30 target VOCs. A VOC data point ŝ has a size 411 along

the m/z dimension, which ensures inclusion of the entire mass spectrum. The size along RT
dimension, δ, was computed with the aim to capture the entire elution process for each target

VOC instance. Precisely, the maximum duration of compound elution, max(endRT −
startRT), was measured across 1868 occurrences of target VOCs reported by expert led-pro-

cessing in training samples. This was computed as�9.8 seconds, corresponding to�61 time

steps on the RT axis. To allow for translation-based data augmentation, the size δ was

increased by 19, resulting in a final δ = 80. Each data point ŝ 2 Rd�411 contains mass spectra of

a VOC peak centred over RT dimension, i.e.:

ŝ ¼ zk; . . . ; zkþδ
2
� l; . . . ; zkþδ

2
; . . . ; zkþδ

2
þl; . . . ; zkþd

h iT

where

RT zkþd
2
� l

� �
¼ startRT;

RT zkþd
2
þl

� �
¼ endRT;

RT zkþd
2

� �
¼ m;

for m ¼ startRTþendRT
2

—a middle point of the VOC peak shape. Note that μ does not necessarily

coincide with peakRT value as VOC peaks can be not symmetric but skewed. l value depends

on the VOC instance.

The VOC dataset for CNN training was unbalanced: the groups representing target VOCs

were unequal since each of the considered VOCs did not necessarily occur in each of the

GC-MS samples from the training set. What is more, as during the scanning of entire raw

breath samples the negative examples appear much often than target VOCs and cover a broad

variety of ion patterns, the negative class was created as half of the VOC dataset. This aligns

with common practice in object detection domain, where the negative class usually dominates

with the ratio up to 3:1 [51, 52]. The size of each class is reported in S1 Table in S1 File.

Data augmentation

In the proposed approach, we devised and tested two augmentation methods that maintain the

underlying structure of a VOC pattern.

Translation along RT. The VOC data point ŝ is centred on the VOC peak so that the mid-

dle point of the VOC peak shape, m ¼ startRTþendRT
2

, is located at δ/2. Twenty VOC data points

were created from ŝ by shifting the extraction point from the abundance matrix A from -9
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to +10 steps along the RT axis (0 indicates ŝ), i.e.:

ŝ�n ¼ zkþn; . . . ; zkþδ
2
; . . . ; zkþnþd

2
; . . . ; zkþnþd

h iT

Such data augmentation presents the VOC pattern at different positions in the data point:

top, centre, bottom (translation along RT) and represents variations in the pattern’s location in

the subsequent sub-matrices of A seen by the network, while scanning entire raw GC-MS

breath samples.

Intensity variation. In the VOC data point, the intensities along RT interval correspond-

ing to the VOC pattern were varied to simulate variations of the VOC concentration (see Fig

7). Background (i.e., values along RT not containing the pattern) remains unchanged. In this

process, it was important to maintain the VOC ion pattern, i.e., relative ratios along the m/z
dimension while increasing peak intensity along the RT axis. This was achieved by multiplica-

tion of each mass spectrum zstartRT, . . ., zendRT (corresponding to VOC location) by a particular

value of a Gaussian-shaped function along RT interval. Precisely, for a data point ŝ:

ŝ ¼

zk

..

.

zkþd

2

6
6
6
6
4

3

7
7
7
7
5
:

the augmented data point ŝ� can be computed as

ŝ� ¼

zk � GRT ðzkÞ

..

.

zkþd � GRT ðzkþdÞ

2

6
6
6
4

3

7
7
7
5
;

where

Gx ¼
e�

1
2

x� m
sð Þ

2

� r þ 1; startRT < x < endRT

1; otherwise;

8
<

:

and r is a random value in the range (0, 0.1). This augmentation step was repeated to obtain 4

additional data points for each data point derived with translation along RT. Therefore, the

Fig 7. Scheme of the data augmentation by the intensity variation in VOC the data point. Along RT points containing the VOC pattern (i.e.,

between sRT and eRT ), the intensities of each m/z channel were multiplied by a Gaussian-shaped function to simulate variations of the VOC

concentration.

https://doi.org/10.1371/journal.pone.0265399.g007
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VOC dataset for CNN training was augmented 100 times (i.e., 20 × 5 times). The intensity val-

ues in each data point from the augmented dataset were normalised in the range [0, 1].

The original VOC dataset had 3,736 data points. Following translation along RT the dataset

for CNN training consisted of 74,720 segments (partially-augmented dataset). When intensity
variation was also applied, the dataset contained 373,600 data points (fully-augmented data-

set). Results presented in the Table 2 indicate that both developed augmentation methods

bring benefits to the system: the best performance was achieved on the fully-augmented

dataset.

CNN filter adaptation

To adjust the deep learning models specifically to VOC detection, we adapt the CNN filters to

the GC-MS data characteristics. In CNNs, filters specify the local receptive fields, i.e., the

regions of the image (or feature maps) visible by convolutional and pooling layers of the net-

work at a time; this is an essential concept that enables CNNs to capture local geometric spatial

correlations in the data [22]. With GC-MS data, such a local correlation occurs only in the

retention time dimension. Along this dimension, the abundance of different m/z increases and

decreases depicting peaks as the VOC exit the GC column. On the other hand, the abundance

values across different m/z channels also correlate as the particular ions make up the VOC pat-

tern (Fig 1a and 1b). However the values along this dimension represent independent ion

channels and locally they are only weakly correlated, thus their correlation cannot be captured

by small local filters.

One of the hypotheses in this study is that the convolutional and pooling layers in the net-

work do not need to be two-dimensional as it is usual for image classification. Thus, two types

of filters are tested: a traditional two-dimensional filter and a specific one-dimensional filter

along the RT axis to cover only this dimension. The filters sizes in the particular network layers

are given, along with the detailed architecture of each network, in S3.1-S3.11 Tables in S1 File.

Phase A output

The last layer in all the tested networks is a fully connected layer with softmax activation. The

softmax function s : Rk ! Rk, defined as

sðxÞi ¼
exi

Xk

j¼0
exj

for i = 1, . . ., k, x ¼ ðxi; . . . ; xkÞ 2 R
k, takes as input a vector of k real numbers and normalises

it into a probability distribution consisting of k probabilities; all the components are mapped

to the interval (0, 1) such that their sum is 1. Therefore, the network returns a probability dis-

tribution over output classes, i.e the probabilities of the allocation of each particular normal-

ised data point s 2 Rd�411
to each of 31 VOC groups:

s! ðP0ðsÞ; . . . ; P30ðsÞ j PiðsÞ ¼ Pðs 2 CiÞÞ

for i = 0, . . ., 30, Ci—class representing the VOC labelled with i. (Note that Pi(s) = σ(x)i, where

x is a vector of 31 entries generated for data point s by the last fully connected layer of the

network.)

The VOC class that gives the highest probability for a data point s is selected as its classifica-

tion c:

cðsÞ ¼ argmax
i
fPiðsÞ j i ¼ 0; . . . ; 30g
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with confidence t:

tðsÞ ¼ max
i
fPiðsÞ j i ¼ 0; . . . ; 30g:

As a result, for each analysed raw GC-MS sample with abundance matrix A 2 RR�411
, the

CNN scanning in phase A produces two sequences LA and TA. LA values indicate classification

labels of the subsequent sub-matrices s of A:

LA ¼ ðcðsiÞ j si � A; i ¼ 1; . . . ;NÞ;

TA values indicate classification confidence given by the network for each respective label:

TA ¼ ðtðsiÞ j si � A; i ¼ 1; . . . ;NÞ;

where N = RT−δ + 1� 22500 is a number of data points in A.

Duration rule: VOC detection

Each maximal sub-sequence of LA with constant label values j and length equal or greater than

a constant γ indicates one detection dj of the VOC j, i.e.:

dj ¼ ðsl; . . . ; slþn� 1Þ;

where

cðsiÞ ¼ j; i 2 ½l; l þ n � 1�; cðsl� 1Þ 6¼ j; cðslþnÞ 6¼ j; n � g; j > 0:

The value γ was derived from the width setting of matrix s: for the augmentation, width of s
was enlarged by 19 pixels in respect to the maximum peak width (see Data augmentation).

Hence, during the scanning of the abundance matrix A, the entire shape of a target VOC peak

is seen by the model at least γ = 20 times. All the detections, of any class, from the abundance

matrix A (i.e., sample) constitutes the set DA.

RT of detection

Let the retention time value corresponding to the specific data point s = [zk, . . ., zk+δ] be

defined as the retention time value of its middle ion channel, i.e.:

RT sð Þ ¼ RT zkþd
2

� �
:

Retention time values corresponding to the first and last data points si of detection dj are

called respectively the start detection, sRT ðdjÞ, and end detection, eRT ðdjÞ:

sRT ðdjÞ ¼ minfRTðsiÞ j si 2 dig;

eRT ðdjÞ ¼ maxfRTðsiÞ j si 2 dig:

We denote the resulting detection interval by

DIðdjÞ ¼ ½sRT ðdjÞ; eRT ðdjÞ�:
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Order rule

The elution of particular VOCs from the GC column can be expected in a certain order (small

variations may occur)related to compounds’ chemical properties. Therefore, to derive a reli-

able list of detected VOCs, the detections that fall outside the expected order are removed.

Let� be a linear order on a set DA of detections, such that

8di; dj 2 DA : di � dj , sRT ðdiÞ � sRT ðdjÞ:

Then:

~DA ¼ DA n fdf j 9 i; j; k < f : df < di < dj < dk

_ 9 i; j; k > f : di < dj < dk < dfg:

Detection confidence

For each detection dj, the detection confidence T ðdjÞ was calculated as the maximum value of

the moving average, with size γ = 20, of the classification confidence values t(s) for the conse-

cutive data points s from dj, i.e.:

T dj

� �
¼ max
ðsi ;...;siþg� 1Þ�dj

tðsiÞ þ . . .þ tðsiþg� 1Þ

g

� �

:

The value γ = 20 was derived as explained for the duration rule above.

Uniqueness rule

Since each VOC may be present in a GC-MS sample at most once, if multiple detections of

one VOC occur, d1
j ; . . . ; dKj

j , the one with the highest detection confidence value is kept in the

set of detections:

djðAÞ ¼ arg max
dkj 2DA

fT ðdk
j Þ j k ¼ 1; . . . ;Kjg;

~~DA ¼ DA n fdk
j 6¼ djðAÞ j k ¼ 1; . . . ;Kj; j ¼ 1; . . . ; 30g:

Phase B output

As an output, phase B produces a set L of detections dj 2
~~DA as 4-tuples of label, start detec-

tion, end detection and detection confidence:

L ¼ f½ j; sRT ðdjÞ; eRT ðdjÞ; T ðdjÞ� :

dj 2
~~DA; j ¼ 1; . . . ; 30g:

RT range of a VOC

Each target VOC in the GC-MS dataset is narrowly distributed over a specific range of the

RT dimension. From the processed data files, the RT range of occurrences was extracted

for each target VOC j across all its instances in the GC-MS dataset reported by expert-led
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processing, i.e.:

RTrangej ¼ ½minfpeakRTjg;maxfpeakRTjg�:

What is important, such RT ranges depend on the GC column. During the course of our

study, the GC column was changed and thus we extracted two RT ranges for each VOC,

RTrange1
j and RTrange2

j , valid respectively before and after column change. S1 Table in S1 File

presents RT ranges for each target VOC.

Tentative true positives

Let d̂j be the detections in the set DA that were not reported in the ground truth at the RT posi-

tion reported by the system for that sample A. Note that we consider the set DA, i.e., before

reducing the number of detections for the order and uniqueness rules, as their application

changes the detection distribution. We observed that most (60% to 74% depending on the net-

work) detections d̂j 2
S

ADA were reported by the system in the RT range of the j VOC

(accordingly before or after column change, i = 1 or 2), i.e.:

DIðd̂jÞ \ RTrangeij 6¼ ;;

Let I denote an interval of length

jIj � max
d̂j2
S

A
DA

jDIðd̂jÞj;

chosen uniformly at random from within the RT dimension (of length R). Then the probability

of the intersection of the interval I with a given RTrangeij can be computed as:

P I \ RTrangeij 6¼ ;
� �

¼
jRTrangeijj þ jIj

R � jIj

�
maxi;jjRTrangeijj þmaxd̂j jDIðd̂jÞj

R � maxd̂j jDIðd̂jÞj
≕Pmax;

where the maxd̂j2
S

A
DA

depends on the network used. Pmax is the upper bound probability of a

random (false) detection d̂j 2 DA of a target VOC j at specific RT range in the sample A. We

computed the following bounds:

Network Pmax
VGG-8-1D 0.0431

DenseNet-40-1D 0.0439
ResNet-38-2D 0.0441

The probabilities Pmax are all very low in comparison to the actual proportion of such con-

sidered detections (i.e., 60% to 74% depending on the network). Therefore, it is highly likely

that the detections d̂j within a compatible RT range are not random false detections, but are

correctly detected VOCs. Such detections are named tentative true positives (TTP).

Tentative true negatives

Several VOCs, not detected at the specific RT points reported by the ground truth (preliminary

marked as false negatives), were detected as tentative true positives on the different RT
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positions within their compatible RT range. Because of the high chance of tentative true posi-

tives to be true positives, the noisy-labelled character of the ground truth and the constraints

that a VOC appears only once in a sample, we conclude that such particular examples may

indicate errors in the expert-led processing. Such examples are called tentative true negatives.

Average precision score

The system performance of each network was assessed by an average precision score (AP) for

each target VOC and mean average precision (mAP). For each target VOC j, a list of all system

detections dj 2
S

A
~~DA of the VOC in all clinical samples from the testing set was derived from

stage 2 output and sorted in descending order associated with the detection confidence scores

T ðdjÞ (for Intersection of the models, it was sorted by mean value of detection confidence

scores for tested models). For the first n elements of this list, the precision function Precision
(n) was defined as the proportion of TP. The recall function Recall(n) was defined as the pro-

portion of all detections in the ground truth that appear in the first n elements of the system

detection list. As usual, the AP score for each target VOC was calculated as the integral under

the graph of precision against recall (S4.1-S7.30 Figs in S1 File). mAP was calculated as the

average of AP values across all target VOCs. AP values for each target VOC for each tested

model, along with the respective graphs of precision vs recall functions, are given in the

S1 File.

Sensitivity and specificity

The system’s sensitivity was computed for the expert benchmark (i.e., TTP are considered FP,

TTN are considered FN) as

sensitivity ¼
TP

TPþ FNþ TTN
;

and for the system-derived correction benchmark (i.e., TTP are considered TP, TTN are consid-

ered TN) as

sensitivity ¼
TPþ TTP

TPþ TTPþ FN
:

The system specificity was computed for the expert benchmark (i.e., TTP are considered

FP) as

specificity ¼
TN

TNþ FP� þ TTP�
;

and for the system-derived correction benchmark (i.e., TTP are considered TP) as

specificity ¼
TN

TNþ FP�
:

Resources

All experiments were run on a server running Linux Ubuntu with 20 cores, 128GB RAM and

NVIDIA Tesla K80 GPU cards. Table 5 compares the training time (stage 1, Fig 2) and average

scanning time (stage 2) of each of the tested network architectures. Memory requirements are

given in S3.1-S3.11 Tables in S1 File.

PLOS ONE Biomarkers detection in breath with machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0265399 April 12, 2022 24 / 28

https://doi.org/10.1371/journal.pone.0265399


Supporting information

S1 File. The combined file with the supplementary tables and figures.

(PDF)

Acknowledgments

We are thankful to Iain Phillips and Yaser Al Khalifah for sharing their work on VOC cluster-

ing, Yang Hu for discussions on deep neural networks, Joanna Turner for discussions on the

analogy with object detection.

Author Contributions

Conceptualization: Angelika Skarysz, Dahlia Salman, Martin Sykora, C. L. Paul Thomas,

Andrea Soltoggio.

Data curation: Dahlia Salman.

Formal analysis: Angelika Skarysz, Dahlia Salman, Martin Sykora, Eugénie Hunsicker,

Andrea Soltoggio.

Funding acquisition: C. L. Paul Thomas.

Investigation: Angelika Skarysz, Andrea Soltoggio.

Methodology: Angelika Skarysz, Dahlia Salman, Martin Sykora, C. L. Paul Thomas, Andrea

Soltoggio.

Project administration: C. L. Paul Thomas.

Resources: Michael Eddleston, William H. Nailon, Kareen Darnley, Duncan B. McLaren.

Software: Angelika Skarysz.

Supervision: Martin Sykora, C. L. Paul Thomas, Andrea Soltoggio.

Validation: Dahlia Salman, Eugénie Hunsicker, Andrea Soltoggio.

Visualization: Angelika Skarysz.

Writing – original draft: Angelika Skarysz, Andrea Soltoggio.

Writing – review & editing: Dahlia Salman, Michael Eddleston, Martin Sykora, Eugénie Hun-

sicker, William H. Nailon, Kareen Darnley, Duncan B. McLaren, C. L. Paul Thomas.

References
1. Smolinska A., Hauschild A., Fijten R., Dallinga J., Baumbach J. & Schooten F. Current breathomics-a

review on data pre-processing techniques and machine learning in metabolomics breath analysis. Jour-

nal Of Breath Research. 8, 27105 (2014), http://www.ncbi.nlm.nih.gov/pubmed/24713999 PMID:

24713999

Table 5. Time resources: Tcime of a network training on the fully-augmented VOC dataset and scanning time of a

single GC-MS sample.

Network Training time Scan time

VGG-8–1D 23 h 2 min

DenseNet-40–1D 37 h 10 min

ResNet-38–2D 80 h 12.5 min

https://doi.org/10.1371/journal.pone.0265399.t005

PLOS ONE Biomarkers detection in breath with machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0265399 April 12, 2022 25 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0265399.s001
http://www.ncbi.nlm.nih.gov/pubmed/24713999
http://www.ncbi.nlm.nih.gov/pubmed/24713999
https://doi.org/10.1371/journal.pone.0265399.t005
https://doi.org/10.1371/journal.pone.0265399


2. Hollywood K., Brison D. & Goodacre R. Metabolomics: Current technologies and future trends. Proteo-

mics. 6 pp. 4716–4723 (2006) https://doi.org/10.1002/pmic.200600106 PMID: 16888765

3. Rattray N., Hamrang Z., Trivedi D., Goodacre R. & Fowler S. Taking your breath away: Metabolomics

breathes life in to personalized medicine. Trends In Biotechnology. 32 pp. 538–548 (2014) https://doi.

org/10.1016/j.tibtech.2014.08.003 PMID: 25179940
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