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A B S T R A C T

Infections have long been a thorny problem that severely threatened public health and resulted in tremendous
economic losses worldwide. Current detection methods for wound infection do not fully meet the requirements
of preventing and treating this disease. Therefore, people are looking for better alternatives, wherein FAIMS
(Field Asymmetric Ion Mobility Spectrometry) technology, by virtue of its high sensitivity, rapid response and
noninvasive operation, is a promising candidate. This paper aims to investigate the possibility of FAIMS tech-
nology in detecting wound infections quickly and accurately. For this purpose, we gathered an odor dataset of
clinical wound samples with the employment of a FAIMS instrument, the Lonestar (Owlstone, UK) analyzer. To
enhance detectability, we proposed a novel algorithm framework, i.e., Local Warning integrated with Global
Feature (LWGF), which is verified on distinguishment between twenty patients with single or mixed infection of
Escherichia coli (E. coli) and six wounded patients without infection. Experimental results showed that the LWGF
successfully identified the patients with the best average AUC of 0.98, and the best recognition rate of 96.15%,
which are much higher than the conventional methods.

1. Introduction

Trauma has become the leading cause of morbidity and mortality
worldwide, which severely threatens public health and the global
economy [1]. About one in ten mortalities is caused by a traumatic
injury, which gives rise to more than 5.8 million deaths per year [2].
Along with this, it is hard to avoid microbial infections, which occur in
not only trauma but also a variety of injuries such as diabetic foot and
cancers [3,4]. Various infections have been significantly threatening
human health [5–8]. Though the majority of infections are found
through visual inspection, however it cannot determine the exact agent,
nor the infection if it is at an early stage. Therefore, rapid and effective
detection of infectious agents is a necessary prerequisite for subsequent
treatment. However prevalent clinical detection methods for infections
(e.g., microbiological culture, serological diagnosis, molecular biolo-
gical testing) usually suffer from shortcomings such as expensive cost,
time-consuming, bad portability, invasive injury, requirement of spe-
cialists and materials, which cannot meet current medical demands,
especially for mass wounded diagnosis occurred in war and disaster.

Statistics show that empirical antibiotic treatment was often adminis-
tered [9], which is untargeted, resulting in a three-fold increase in
mortality compared to targeted antibiotic treatment [10]. Therefore,
people have been striving for new and better alternatives to meet the
demands of infection prevention, diagnosis, and monitoring.

As bacteria produce specific volatile organic compounds (VOCs)
and/or gases, which can be utilized for the detection of bacterial in-
fection [11]. Different infected and uninfected wounds generate unique
metabolites including known chemicals such as alcohol, aldehydes,
acids, esters, ketones and unknowns, part of which results in infection-
specific VOCs and/or gases [12]. Therefore it is able to determine
wound infections with employment of gas phase detection technology
such as gas chromatography/mass spectrometer (GC/MS), electronic
nose (E-nose) and ion mobility spectrometry (IMS). GC/MS has been
widely adopted in the chemical determination of volatile bacterial
products [13–21]. While it is not suitable for mass screening of wound
infection due to its high cost of use and time, and bad portability, etc. E-
nose, which mimics the biological olfactory system, has also been used
for bacteria discrimination for decades [22–29]. While E-nose usually
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suffers from poor-sensitivity (ppm level), drift, aging, etc., among
which the poor-sensitivity is an obvious obstacle for infection detection,
hence people tried to elevate detection limit of E-nose by improving
performance of the hardware and algorithm. Persaud K.C. and Byun
et al. [22,23] used an electronic nose incorporating an automated solid-
phase micro extraction (SPME) desorption system to achieve wound-
state monitoring; Xun-Tao et al. [24] used a gas condensation unit to
improve the limit of E-nose. Guo et al. [25] attempted to solve this
problem in the aspect of feature extraction and model optimization.
Besides of the two technology, IMS has also been used in bacteria de-
tection for more than twenty years [30–36]. Because IMS possesses the
characteristics of high sensitivity, quickness of response, and avail-
ability for miniaturization, it has also become an option for wound
infection detection. As an evolution of IMS, FAIMS [37] technology
inherits the merit of IMS and can detect and quantify a wide range of
chemical compounds directly from a flow of gas or from the headspace
of liquid or solid samples.

This study aims to combine FAIMS technology and machine
learning to investigate the potential of which as a rapid screening ap-
proach for clinical wound infection via wound odors. FAIMS and other
similar technologies have been extensively used in the areas of food and
health care, and the researchers have developed and applied various
algorithms to fully exploit the potential of the technologies. When de-
tecting, FAIMS generates a kind of map called dispersion field (DF)
spectrum, where each element is the current intensity, and the vertical
dimension is the DF intensity (varies from 0% to 100% of its max) and
the horizontal dimension is the compensation voltage (CV, usually from
-6 V to 6 V), so each row of the spectrum is a response curve at a DF
intensity. To our knowledge, current ways to process the spectrum are
based on the employment of several stable spectra, where either the
entire spectrum (global), or a specific area or only one DF curve (local)
is used to extract the feature. For example, Sinha et al. [38–40] assessed
the applicability of FAIMS towards detection of early infections in the
stored agricultural products such as potatoes and onions. They used a
specific area (such as 47%–77% of DF and -1.30 V to -0.90 V of CV) of
two or three stable spectra which were selected from the collected
spectra, and then extracted the max response value of each DF curve in
the area as the feature. Kontunen et al. [41] detected the surgical smoke
of various tissue types by differential ion mobility spectrometry (DMS)
to find the possible biomarkers for cancer or bacterial infection, where
one spectrum was collected and the whole was flattened to a vector as
the feature. Rutolo et al. detected soft rot disease (commonly for po-
tatoes) by FAIMS, and collected two spectra for a sample. They only
used one DF curve of each spectrum for analysis because they believed
that the more DF curves yielded no improved outcome when under-
taking data analysis. Arasaradnam et al. [42,43] detected inflammatory
bowel disease and irritable bowel syndrome by the Lonestar (Owlstone,
UK), respectively, where one stable spectrum was collected for each
sample and the whole was used to extract the feature. In our opinion,
perhaps using a few stable spectra is not a big problem if the sample is
stable enough. However, if the sample is unstable, such as in the pre-
sence of sample degradation, then merely using the stable spectra is not
the proper way to make analysis, because key information may hide in
those unstable spectra, and so it is when either use a whole or specific
part of one spectrum.

The traditional spectra or concentration profiles have been widely
used for data analysis in chemometrics, which are effective and reliable.
And for the other hand, the image processing algorithms are also widely
used in this field. We consider that the two methods belong to different
technical routes. Nevertheless, in our opinion, they share the same es-
sence: measurement, statistics, inference, and verification. In this
paper, we employ the image processing algorithm to solve the odor
measurement problem. Specifically, we proposed a novel algorithm
framework for the DF spectra analysis, i.e., Local Warning Integrated
with Global Feature (LWGF), which exploits both the local and global
information based on a series of dynamic spectra.

2. Material and methods

2.1. Ethics approval

This work was conducted in accordance with the ethical principles
of Good Clinical Practice and the Declaration of Helsinki. The Medical
Ethics Committee of Daping Hospital of The Third Military University
(Chongqing, China) approved the protocol before the commencement
of the study based on informed consent of all patients involved in the
study.

2.2. Collection of wound infection samples

Human wound samples were obtained from the trauma center and
intensive care unit of Daping Hospital of The Third Military University.
Wound samples were collected during surgery or postoperative care,
where the types include excision of necrotic muscle or tissue, secretion,
drainage fluid. Collection processes neither disturbed the scheduled
treatment plan of the patients nor added extra pain and burden to them.
The collected sample was divided into at least two identical specimens,
where the number of the specimen depended the quantity of the sample
(in most cases, we acquired three specimens). One specimen was im-
mediately sent to the clinical laboratory of the hospital to conduct of-
ficial infection test. The rest one(s) was analyzed by the Lonestar, where
most of them were firstly pre-cultured in mercaptoacetate broth for
12–20 h and a few were directly tested. As a preliminary study, our
primary goal is to investigate the feasibility of FAIMS technology on the
detection of wound infection. Therefore, we planned to culture most of
the clinical samples at initial stage of this study, because it is the routine
process involved in many traditional bacteria tests.

2.3. Brief introduction of FAIMS technology and the acquisition of the
spectra

The detection process of FAIMS technology can be divided into io-
nization, separation and detection [37]. When volatile sample is in-
troduced via a carrier gas, it is firstly ionized into either positive or
negative ions which continuously flow into the electrode channel,
where a high intensity radio frequency electric field ED (dispersion
field) is applied (Lonestar using a Ni-63 source). As the fact that
charged ions exhibit different mobility under high intensity electric
field, these ions pushing by a flow advance on different trajectories.
Handled by a DC voltage EC (compensation voltage), the detector si-
multaneously measures the current intensity of positive and negative
ions which just pass the channel without being annihilated. With par-
allel control of ED and EC, two dispersion field pictures (positive and
negative characteristic spectra) are generated. The typical sensitivity of
FAIMS is believed to be lower than ppm level in practice, which de-
pends on the detection condition, such as the carrier gas and operating
temperature. FAIMS can detect a wide range of chemicals including
aromatic amines, amines, phosphorous compounds, sulfoxides, ketones,
esters, alkenes, alcohols, aromatics, water, and etc.

The data acquisition set up consists of the Lonestar portable ana-
lyzer, ATLASTM sample kit and a zero gas generator (Leman Instrument,
France). The sampling process was conducted under common set
[42,43], but we used a 10ml glass vial to place our sample into the
sampler. We repeated scanning a specimen for about 30 spectra (one
spectra includes a positive one and a negative one), and the scanning
stopped when the experiment operator found the spectra turned to be
too weak by visual inspection. With the resolution setting of 51× 512,
one spectra can be obtained within 3min. Due to the difference in
specimen quantity of each patient, so the numbers of collected spectra
of each patient were not the same. According to the official test results,
the patients were categorized into three groups: single infection group,
mixed infection group, and control group (uninfected with open
wound) and we obtained a clinical wound sample database of 60
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patients shown in Table 1.

2.4. Machine learning task and validation protocol

A machine learning task requires sufficient independent identically
distributed (i.i.d.) instances to train a model which is used to predict the
new instance. As in our database, the frequency of E. coli-related in-
fection was much higher than that of the others, therefore we set the
task to determine whether a test patient was infected with E. coli (single
or mixed infection). Specifically, we included the control group as the
negative category (6 patients), and the E. coli-related groups as the
positive category (20 patients), which are marked with underline in
Table 2. The reason to include the mixed-infection groups of E. coli was
to increase the number of validation patients. For the validation pro-
tocol, we adopted the cross-validation set of hold one out and real in-
dependent test, i.e., for each test, one patient’s spectra were predicted
and validated by the model trained by others’. In our formulation, all
the original spectra (dynamic spectra) rather than one or two stable
spectra were adopted to learn the model.

2.5. LWGF algorithm framework

2.5.1. Data pre-processing and global processing module
The basic strategy of the LWGF is to jointly exploit the information

of different spacial levels, where data analysis are parallel processed on
each level and then the outputs of which are integrated to make final
decision. Herein, we gave a paradigm based on two spacial levels, i.e.,
the global level (whole spectrum) and local level (a block). As shown in
Fig. 1, the training process contains 4 modules. In module 1, the ori-
ginal positive and negative spectra (each with size of 51*512) sub-
tracted the mean value of the red box area on the top left corner to
remove background noise. Then, we connected the two the green boxes

(each with size of 36*256) end to end, because the response of sig-
nificance would not occur beyond the area, so we obtained one spec-
trum with size of 72*256 after pre-processing.

In module 2, the common image feature (e.g., LBP) FI was extracted
from the whole spectra, and then it was used to train a machine
learning model where its parameter feature was furtherly extracted to
form the global parametric feature FG. In our application, the Least
Squares Support Vector Machines (LS-SVM) model was trained on the
image feature FI. After that, we extracted the latent variable as the
feature of one spectra, where the latent variable was a real value
parameter indicating the distance to hyperplane of the SVM model.
However, since the spectra amounts of each patient were different, so
their feature dimension were different as well. There are some methods
to unify the feature dimension such as down sampling and histogram
statistic, nevertheless just using the mean value FG of the latent vari-
ables of a patient could solve the problem well.

2.5.2. Local warning module
The local warning of module 3 (shown in the subfigure of Fig. 1)

started with an image partition, where the whole spectra was divided
into blocks with small size, e.g., of 4*4 in our case, and so we had 1152
blocks. Secondly, we computed the mean response value (MRV) on a
block by

∑ ∑=
∈ ∈

b
N

I i jMRV( ) 1 ( , )
b i A j Ab b (1)

where b is the index of block, I(i, j) the response intensity of pixel (i, j),
Ab the area, Nb is the number of the pixels. Thirdly, we excluded the
block with very low absolute value of mean MRV. In our case, the block
with the value lower than 0.03 was eliminated (about 750 blocks in our
case), where the distribution of the mean MRV on each block is shown
in Fig. 2. Then, the feature data on each block were clustered. DBSCAN

Table 1
Subject characteristics of the clinical wound odor database.

Index Infection type No. of subjects Range of age Mean of age No. of male No. of female

1 Control group 6 24-71 54.5 3 3
Single Infection Group (13 groups) 32 16-68 42.3 26 6

2 Escherichia coli 10 21-65 45.3 9 1
3 Acinetobacter baumannii 1 28 28 1 0
4 Klebsiella pneumoniae 3 17-55 29.7 3 0
5 Citrobacter freundii 3 49-65 59.7 1 2
6 Staphylococcus aureus 3 41-54 49.7 3 0
7 Pseudomonas aeruginosa 3 33-45 37.3 3 0
8 Enterococcus hirae 1 16 16 0 1
9 Bacillus cereus 2 28-32 30 1 1
10 Enterococcus durans 1 16 16 0 1
11 Proteus mirabilis 1 51 51 1 0
12 Cupriavidus paucula 1 60 60 1 0
13 Corynebacterium striatum 1 68 68 1 0
14 Enterobacter cloacae 2 56-63 59.5 2 0

Mixed infection group (18 groups) 22 13-63 32.2 20 2
15 Acinetobacter baumannii, Burkholderia cepacia 1 42 42 1 0
16 Acinetobacter baumannii, Escherichia coli 3 13-44 33.7 3 0
17 Acinetobacter baumannii, Enterococcus faecium 1 20 20 1 0
18 Acinetobacter baumannii, Pseudomonas aeruginosa 1 27 27 1 0
19 Aeromonas hydrophila, Escherichia coli 1 31 31 0 1
20 Alcaligenes xylosoxidans, Pseudomonas aeruginosa 1 27 27 1 0
21 Escherichia coli, Enterococcus faecalis 1 13 13 1 0
22 Escherichia coli, Proteus mirabilis 1 34 34 1 0
23 Escherichia coli, Staphylococcus aureus 1 15 15 1 0
24 Enterobacter cloacae, Klebsiella pneumoniae, 1 28 28 1 0
25 Enterobacter cloacae, Pseudomonas aeruginosa, 1 13 13 1 0
26 Pseudomonas aeruginosa, Klebsiella pneumoniae 3 17-48 36.7 3 0
27 Pseudomonas aeruginosa, Enterobacter aerogenes 1 63 63 1 0
28 Pseudomonas aeruginosa, Staphylococcus aureus 1 40 40 1 0
29 Staphylococcus aureus, Corynebacterium striatum 1 45 45 1 0
30 Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa 1 27 27 1 0
31 Escherichia coli, Enterococcus faecium, Pseudomonas aeruginosa 1 36 36 0 1
32 Escherichia coli, Enterococcus faecalis, Aeromonas hydrophila 1 48 48 1 0
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[44] is a popular clustering technology without need to specify the
number of clusters which is suitable for our task. However if set the Eps
(epsilon: the threshold of cluster distance of DBSCAN) to be a hard
value in the usual way, we found the clustering effect would be very
bad because the intervals of the MRV feature sequence varied greatly on
different blocks and patients. To deal with this problem, we presented a
method (listed on Table 3) to determine soft Eps adaptively, where the
Grubbs’s test [45] was iteratively used to delete the outlying interval.

As shown in Fig. 3, where one row represents a sequence of the MRV
feature of a patient, if we roughly set a hard value for the Eps such as
0.1 or 0.3, it could not cluster well on both of the two blocks, but the
soft Eps method is able to find good cluster on the blocks simulta-
neously.

Next, for each patient, we were to find the valid block which was
able to identify the patient based on the corresponding cluster. Here, we
proposed a method named Interactive Discrimination based on

Table 2
Specific information of the negative and the positive category.

Subject index Category Group index Age Sex Injury Sample type No. of spectra Infection
level of E. coli

N1 Negative 1 (uninfected) 46 Male Crush injury Exudate culture 61 –
N2 Negative 1 (uninfected) 24 Male Explosive wound Cortex 70 –
N3 Negative 1 (uninfected) 47 Male Open fracture Tissue culture 39 –
N4 Negative 1 (uninfected) 68 Female Hip infection Secretion 25 –
N5 Negative 1 (uninfected) 71 Female Bedsore Tissue culture 46 –
N6 Negative 1 (uninfected) 71 Female Bedsore Pyogenic fluids culture 43 –
P1 Positive 2 (single E. coli) 53 Male Right calf chronic infection Pyogenic fluids culture 27 + + + +
P2 Positive 2 (single E. coli) 45 Male Left thigh infection Pyogenic fluids culture 29 + +
P3 Positive 2 (single E. coli) 45 Male Left thigh infection Drainage fluid culture 25 + +
P4 Positive 2 (single E. coli) 65 Female Hip crush injury Drainage fluid culture 62 + +
P5 Positive 2 (single E. coli) 21 Male Left leg crush injury Pyogenic fluids culture 43 +
P6 Positive 2 (single E. coli) 39 Male Right arm open fracture Pyogenic fluids culture 82 +
P7 Positive 2 (single E. coli) 39 Male Right arm open fracture Pyogenic fluids culture 29 + +
P8 Positive 2 (single E. coli) 61 Male Rectal tumor Pyogenic fluids culture 34 + + +
P9 Positive 2 (single E. coli) 23 Male Appendicitis Pyogenic fluids culture 36 + + +
P10 Positive 2 (single E. coli) 62 Male Rectal cancer Drainage fluid culture 34 + + +
P11 Positive 16 (mixed E. coli) 44 Male Ulcer of the left foot Pyogenic fluids culture 121 +
P12 Positive 16 (mixed E. coli) 27 Male Pelvic fractures Pyogenic fluids 85 + + +
P13 Positive 16 (mixed E. coli) 13 Male Pelvic fractures Necrotic muscle 71 + + +
P14 Positive 19 (mixed E. coli) 31 Female Open fracture of left tibiofibula Tissue culture 77 + +
P15 Positive 21 (mixed E. coli) 13 Male Pelvic fractures Necrotic muscle 66 +
P16 Positive 22 (mixed E. coli) 34 Male Rectal cancer Pyogenic fluids culture 118 +
P17 Positive 23 (mixed E. coli) 15 Male High falling Pyogenic fluids and necrotic tissue culture 68 + +
P18 Positive 30 (mixed E. coli) 27 Male Pelvic fractures Necrotic muscle and pyogenic blood 74 + + +
P19 Positive 31 (mixed E. coli) 36 Female Pelvic fractures Necrotic muscle 43 + +
P20 Positive 32 (mixed E. coli) 48 Male Pelvic fractures Necrotic muscle 59 + + +

*Infection level are official results from clinical laboratory department.

Fig. 1. Overview diagram of the proposed LWGF.
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Similarity Measurement (IDSM), which consists 6 steps below.

(1) Choose the negative category as the base class (B class) and the
other one as the target class (T class).

(2) Compute the Jaccard index IJ of the B class on each block.

For two interval E and F, the Jaccard index is defined as

= ∩
∪

J E F E F
E F

( , ) | |
| |

.
(2)

Based on Eq. (2), we defined a Jaccard similarity function I (•)J to
measure the similarity of the B class on a block. Assume there are N
patients of the B class, and patient i has Ci b, valid clusters on block b
where each cluster interval is denoted as Dj

i b( , ), j=1, 2,…, Ci, b. The
I b( )J is defined as

∑ ∑= ⋃ ⋃
= = = ≠ =

I b
N C

J D D( ) 1 1 ( , ).J
i

N

i b j

C

j
i b

k k i

N

j

C

j
k b

1 , 1

( , )

1, 1

( , )
i b k b, ,

(3)

Fig. 4 gives us an intuitive understanding of the function, where one
row represents a set of the MRV feature of the B-class patient. The IJ is
zero on block A, where all the valid clusters of the patients are disjoint

Fig. 2. Distribution of the MRV over blocks.

Table 3
Algorithm flow to determine the soft Eps of DBSCAN based on Grubbs’s test.

Input:
A sequence SN of the MRV feature to be clustered, where the N is the length of S.
Output:
The soft Eps.
Procedure:
1) Sort the sequence S in ascending order.
2) Compute the intervals (denoted by ITV) between every two adjacent points by

= + − = … −i i i iITV( ) S( 1) S( ), 1, 2, , N 1.
3) Iteratively employ the Grubbs’s test to delete the outliers of the ITV until no more

outliers are found.
4) Compute the mean value of the remaining ITV, which is denoted by eps.
5) The soft Eps is determined by = ×Eps 3 eps.

*As the Grubbs’s test is based on the hypothesis of norm distribution, which is
also accepted in our algorithm, so according to the Pauta criterion, the three
times of the eps is a proper value which is able to cluster the points of the same
class with probability of 0.9973.

Fig. 3. Comparison of the soft Eps and the hard Eps.

T. Sun, et al. Sensors & Actuators: B. Chemical 298 (2019) 126926

5



meaning they are totally dissimilar. While on block B, the IJ is very high
which conforms to the great similarity of the patients.

(3) Set a threshold value THJ, such as 0.75, and exclude the blocks with
IJ lower than the value.

(4) For each T class patient, find the warning indexes.

As shown in Fig. 5, region B is the union of the valid cluster interval
of all the B class patients. The region T1 and T2 is the valid cluster
interval of one T class patient, respectively, and the distance 1 and 2 are
the corresponding boundary distance to region B. We convert the
boundary distance into relative distance according to

= +Rdist Bdist σ T σ B/( ( ) ( )),cluster region (4)

where Rdist is the relative distance of one cluster of the T class patient,
Bdist the boundary distance, Tcluster and Bregion denotes the feature points
in the interval of the T cluster and the region B, respectively, and σ (•)
computes the standard deviation of the feature points. Then sort all the
T clusters in descending order according to corresponding Rdist, and
exclude those clusters with Rdist lower than threshold THRdist (such as
3). The larger Rdist means the higher probability that the new ob-
servations of the two class could not invade each other (a new ob-
servation locates nearer to the opposite class). Select the first few (such
as the first 3) clusters as the warning indexes for each T patient, which

consist a table TP for the positive category.
(5) Exchange the B class and T class, then repeat step (1)-(4), so

obtain a table TN of the negative category.
(6) Train the local warming model ML.
Based on TN and TP, we computed the number of warnings of each

train patient over the tables, where a Gaussian Classifier (GC, detail
mathematical derivation was given in the appendix) was presented to
identify the warning. Take Fig. 5 for example, as cluster T 1 was a
warning cluster of TP, use the GC to determine a decision point (DP)
between the region T 1 and region B. When a new valid cluster of the
test patient fall in the left side of the DP1, it will be identified as a
warning of TP. Finally, the TP warnings minus the TN warnings getting
one local parametric feature FL called cumulative warnings (FL_C), and
the other local feature FL_L is the latent variable yielded by LS-SVM with
input of the FL_C. It should be noted that we only take four types of the
category distribution into account in the GC, which are shown in Fig. 1.

2.5.3. Integration
Concatenating the global feature FG with the local feature FL_C or

FL_L, we obtained two kinds of fused feature to train the final integrated
model MLG, respectively.

3. Results and discussion

3.1. Formulation of the data analysis

Data analysis is formulated in three aspects. 1) Based on global
feature FI, we investigated the performance difference between the
employment of the dynamic spectra (dynamic way) and the stable
spectra (stable way); 2) We demonstrated the performance of the pro-
posed LWGF methods based on the dynamic way in ROC, AUC, and
accuracy; 3) We validated the model stability of the LWGF with respect
to the two free parameters THJ and THRdist.

Three prevalent feature extraction techniques, i.e., gray level co-
occurrence matrix (GLCM) [46], local binary pattern (LBP) [47,48],
multiscale wavelet energies (MWE) [49]. Here we present a short in-
troduction of the techniques. The GLCM is a texture analysis method,
and it calculates the statistics, such as entropy, homogeneity, energy, of
a probability of the occurrence of one pixel with a gray level i and
another pixel with a gray level j, where the latter pixel j lies on the
position of distance d and direction θ off the pixel i. The LBP is also a
powerful means of texture analysis, and it has been extended into many
versions. The basic version of LBP is to calculate the respective value of
the surrounding pixels to the center pixel by thresholding in a 3×3-
neighborhood. In this way, the 8 points can generate an 8-bit binary

Fig. 4. Schematic diagram of the similarity measurement.

Fig. 5. Schematic diagram of the IDSM method.
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number called LBP code which is used to reflect the texture information
for this area. The MWE is to calculate the energies of Wavelet coeffi-
cients at different scales, where the Wavelet coefficients are derived
from the inner product of signal and Wavelet basis function.

And four popular classifier, i.e., LS-SVM, extreme learning machine
(ELM), random forest (RF), K-Nearest Neighbor (KNN), were adopted to
be the basic algorithm components. All the programs involved in this
paper were written in Matlab (2016b) on Windows, and the parameters
of the components were listed in Table 4.

3.2. Stable way or dynamic way

We listed the average recognition rates for the test spectra with
employment of dynamic or stable spectra in Table 5. It seems that the
dynamic way is better than the stable way as it won seven of the twelve.
Because of the different principal of the classifiers, the abilities of which
to utilize the information and resist the noise of the spectra are different
as well. Nevertheless, as long as we can effectively extract the in-
formation hiding in the dynamic spectra and input it to the prediction
model, a good results will be expected.

The final aim of the detection is to identify the patient. So, with
reusing the LS-SVM, we obtained the results for the patients, where the
recognition rates of the global, local, and the integration methods
(LWGF based on the global feature FG_LBP in dynamic way) are listed in
Table 6. It clearly shows that the dynamic way is much better in ac-
curacy than the corresponding stable way, which probably because the
diversity of the feature in dynamic way is richer than that in the stable
way due to more spectra were used. If only use one stable spectrum for
the test patient, then it is equal to that for the test spectrum. Therefore,
we believe that using several stable spectra is detrimental to the iden-
tification for patients.

3.3. Performance and model stability of the proposed LWGF

Besides, we draw the ROCs of the stable, dynamic, and the LWGF
methods in one prediction in Fig. 6. It is confirmed that both of the two
LWGF methods achieve the expected results. Specifically, the second
LWGF method (FL_L + FG_LBP) reaches the average recognition rate of
96.15% and average AUC of 0.98 (10-times, THJ =0.70, THRdist =
3.0), which has tremendous advantage than the global methods. So, it
indicates that the local features have been effectively integrated with
the global feature by the LWGF algorithm. With respect to the two free
parameters, the average recognition rates and AUCs are listed in Tables
7 and 8, respectively, which demonstrates the LWGF methods are stable
and able to sustain the advantage to the global methods in the range.

3.4. Degradation of the clinical wound sample

The degradation is a notable issue which indicates the cancellation
process of the clinical wound sample. We discover that the odor of the
fresh sample usually disappeared after collecting 30 spectra. However it
is not a continuously weakening process, but an overall declining with
slight fluctuations. In our work, although the ATLASTM sample kit is
able to heat the sample to a fixed temperature with rapid and full stir,
which cannot make the sample odor release continuously and uni-
formly as expected. Obviously, it is a tricky problem because the dy-
namic change would increase the difficulty of detection. However, from
another angle, it is also the demonstration for the reasonableness of the
technical route of clustering adopted in the LWGF algorithm.

4. Conclusions

In this paper, we proposed the integration algorithm LWGF which
was validated in the detection of clinical infection via wound sample
odor. As a preliminary study, this work showed that FAIMS technology
has the potential for rapid screening of wound infection. We hold the

Table 4
Parameters of the algorithm components.

LBP GLCM MWE LS-SVM RF KNN ELM

8 bits;
uniform LBP

distance=1;
direction angle: 0°, 45°, 90°, 135°

db4 RBF kernel; grid search; one Vs one “ntree”=500; “mtry”=3 K=5 Activation Function= tribas;
Hidden Neurons= 130;
C=1024;

Table 5
Average recognition rates (10-times) for the test spectra with employment of dynamic or stable spectra.

Classifier LS-SVM RF ELM KNN

Feature LBP GLCM MWE LBP GLCM MWE LBP GLCM MWE LBP GLCM MWE

Stable-1 76.15 74.62 70.00 69.23 73.08 65.38 66.54 79.23 70.77 73.08 80.77 76.92
Stable-3 73.33 70.64 71.15 75.64 85.90 74.36 58.85 65.77 65.26 69.23 75.64 73.08
Dynamic 84.34 77.59 74.30 78.28 76.96 73.14 72.61 74.11 73.48 78.72 77.79 73.68

*Stable-1 and Stable-3 denotes the stable method with one stable spectrum or three used for a patient.
**The recognition rate is the number of correct predictions for the spectra of one test patient.

Table 6
Average recognition rates (10-times) for the test patient of the global feature, local warning feature, and the proposed LWGF.

Global
feature
FG_MWE

Global feature
FG_ MWE

Global
feature
FG_GLCM

Global feature
FG_ GLCM

Global
feature
FG_LBP

Global feature
FG_LBP

Local feature FL_C Local feature FL_L LWGF FL_C +
FG_LBP

LWGF FL_L +
FG_LBP

(stable-3) (dynamic) (stable-3) (dynamic) (stable-3) (dynamic)

73.85/4.73 76.92/0 68.46/5.38 80.38/3.82 73.85/3.53 90.77/5.50 84.62/0 84.62/0 95/1.86 96.15/0
(THJ=0.7,
THRdist=3.2)

(THJ= 0.7,
THRdist=3.2)

(THJ= 0.7,
THRdist=3.2)

(THJ= 0.7,
THRdist=3.2)

*The subscript after the slash indicates the standard deviation.

T. Sun, et al. Sensors & Actuators: B. Chemical 298 (2019) 126926

7



opinion that effective use of the available information is the foundation
to accomplish the detection task. So we choose to use the dynamic
spectra rather than the stable spectra to construct the recognition
model. However, it also brings the difficulty that how to extract and
exploit the effective ones from the enormous stockpile of information,

where the interference can coexist. Therefore, we proposed the LWGF
algorithm to screen each block of the spectra to select the valid ones,
and integrate the effective information of global and local space to-
gether to recognize the odor.

Fig. 6. (a) ROC of the F_G_LBP with three stable spectra. (b) ROC of the F_G_LBP with dynamic spectra. (c) ROC of the LWGF with F_L_C. (d) ROC of the LWGF with
F_L_D.

Table 7
Average recognition rates (10-times) for the test patient of the proposed LWGF with respect to the free parameters THJ and THRdist.

(a). Average recognition rates of the FL_C fused with the global feature FG_LBP

THJ THRdist

3.0 3.2 3.4 3.6 3.8 4.0

0.70 94.62/2.69 95.00/1.86 94.23/2.72 95.00/1.86 93.46/2.60 93.46/2.60
0.75 93.85/3.72 95.00/1.86 95.00/1.86 95.00/1.86 94.62/2.69 93.85/3.24
0.80 94.23/2.03 93.85/2.69 93.85/2.69 93.46/3.65 94.62/1.99 93.46/3.65

(b). Average recognition rates of the FL_L fused with the global feature FG_LBP

THJ THRdist

3.0 3.2 3.4 3.6 3.8 4.0

0.70 91.15/1.86 96.15/0 88.47/0 92.31/1.81 88.46/0 91.92/1.22
0.75 91.54/1.62 94.62/2.69 93.08/2.43 89.23/3.97 88.85/2.84 91.15/2.60
0.80 95.00/1.86 94.62/1.99 95.38/1.62 94.62/2.69 95.38/1.62 95.00/1.86

*The average recognition rates of the global method (LBP+LS-SVM) is 90.77/5.50.
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Appendices

Let random variable Vi denotes the response intensity value of the i-th pixel on a spectrum, and = ∑ =V Ci r
N

i r1 ,
i , where Ni is the number of chemical

species appearing at the i-th pixel position, and Ci r, is a random variable representing the current intensity of the r-th chemical species at the position.
For an area S on the spectrum, we define the average current intensity = ∑ ∈V V M( )/i iS S S, where MS is the pixel number of S. It is reasonable to
assume that VS obey the Gaussian distribution, according to the central limit theorem.

For two categories of the valid cluster points X and Y, calculate the expectation μ μ,X Y , and standard deviation σ ,σX Y of the groups, respectively.
The probability density function curve of the two categories and the decision point (DP) p are shown in Fig. A1. For a test sample x, the decision rule
is:

⎧
⎨⎩

∈ ≤
∈ >

≤
x X p
x Y p

μ μ
category if x
category if x

, when ,X Y

⎧
⎨⎩

∈ ≥
∈ <

>
x X p
x Y p

μ μ
category if x
category if x

, when .X Y

Therefore, the total misclassification probability ER of the x is formulated as

∫ ∫= + = − − + − −
−∞

− +∞ −ER ER ER π x μ dx π x dx( 2 σ ) exp( ( ) /(2σ )) ( 2 σ ) exp( ( μ ) /(2σ )) ,X Y
p

X X X p Y Y Y
1 2 2 1 2 2

(A1)

where ERX and ERY is the misclassification probability of the negative and positive category, respectively. Then, we aim to determine an optimal
decision point p to minimize the misclassification probabilities. Let ∂ ∂ =ER p/ 0, we obtain

− − − − − =− −π σ x μ π σ x μ( 2 ) exp( ( ) /(2σ )) ( 2 ) exp( ( ) /(2σ )) 0X X X Y Y Y
1 2 2 1 2 2 (A2)

⇔ − + − − + + =p μ μ p μ μ σ σ(σ σ ) 2( σ σ ) σ σ 2σ σ ln( / ) 0.X Y X Y Y X X Y Y X X Y Y X
2 2 2 2 2 2 2 2 2 2 2 (A3)

It means that p meets the quadratic equation Eq. (A-3) which yields two solutions

= − − + − − − − + + −p μ μ μ μ μ μ σ σ{ 2( σ σ ) [( σ σ ) 4(σ σ )( σ σ 2σ σ ln( / )] }/[2(σ σ )],X Y Y X X Y Y X X Y X Y Y X X Y Y X X Y1
2 2 2 2 2 2 2 2 2 2 2 2 2 1/2 2 2 (A4)

= − − − − − − − + + −p μ μ μ μ μ μ σ σ{ 2( σ σ ) [( σ σ ) 4(σ σ )( σ σ 2σ σ ln( / )] }/[2(σ σ )].X Y Y X X Y Y X X Y X Y Y X X Y Y X X Y2
2 2 2 2 2 2 2 2 2 2 2 2 2 1/2 2 2 (A5)

Then one of the solutions between μX and μY is accepted, and the other one should be rejected.

Table 8
Average AUCs (10-times) of the proposed LWGF with respect to the free parameters THJ and THRdist.

(a). Average AUCs of the FL_C fused with the global feature FG_LBP

THJ THRdist

3.0 3.2 3.4 3.6 3.8 4.0

0.70 0.93/0.0147 0.93/0.0088 0.93/0.0136 0.91/0.0197 0.92/0.0137 0.91/0.0163
0.75 0.91/0.0152 0.92/0.0142 0.92/0.0161 0.91/0.0136 0.91/0.0177 0.91/0.0179
0.80 0.91/0.020 0.92/0.0144 0.91/0.0201 0.91/0.0227 0.91/0.0141 0.91/0.0189

(b). Average AUCs of the FL_L fused with the global feature FG_LBP

THJ THRdist

3.0 3.2 3.4 3.6 3.8 4.0

0.70 0.98/0.0035 0.97/0.0111 0.95/0.0090 0.95/0.0026 0.96/0.0070 0.96/0.0131
0.75 0.92/0.0158 0.92/0.0168 0.91/0.0157 0.91/0.0196 0.90/0. 0137 0.90/0.0151
0.80 0.93/0.0153 0.92/0.0157 0.93/0.0149 0.94/0.0142 0.92/0.0126 0.90/0.0194

*The average AUC of the global method (LBP+ LS-SVM) is 0.88/0.0181.
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