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Abstract

This paper serves as an introduction to a particular area of Machine Learning, statistical classification, applied on
medical data sets for automatic clinical diagnosis. An application of these models is illustrated in order to provide
non-invasive diagnostics with the discovery of new gas volatile compounds (VOCs) that could provide the detection
of fermentation profiles of patients with Inflammatory Bowel Disease (IBD). To achieve the above, an investigation of
ten statistical classification algorithms from the supervised learning literature is undertaken. From this investigation,
selected algorithms are applied on medical Field Asymmetric Ion Mobility Spectrometry (FAIMS) data sets to train
classification models. From our results on the FAIMS data sets, we show that it is possible to classify unseen samples
with a very high certainty and automatically perform medical diagnosis for Crohn’s disease and Ulcerative Colitis.
In addition, we propose potential future research on other data sets by utilizing the results from the identification of
informative regions in feature space.
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1. Introduction

By utilizing the emerging technologies and avail-
able data around us, AI is increasingly being used in
Medicine [1]. Development of algorithms that are able
to process large amounts of data and produce valuable
information is necessary. In the medical world, where
decisions are of vital importance, utilization of medical
history data can greatly enhance diagnosis. That is, by
collecting samples from positively diagnosed and neg-
atively diagnosed patients, it is possible to identify pat-
terns or specific features that distinguish them for reli-
able future decision-making.

The scientific field that deals with this problem
is called Machine Learning and a more relevant sub
field called statistical classification from the supervised
learning literature. A model is trained by giving it a
number of examples, each belonging to a certain class.
The aim is to use this model to accurately predict new,
previously unseen examples. Doctors and practitioners
can benefit from this technology since models can find
patterns and structure in the data that was previously
not possible. This can be achieved by the parallel in-
telligent processing of huge amounts of medical history

data available in hospitals around the globe.
The application of these models on FAIMS data sets

is inspired by a long tradition of clinicians that have
been using their own sense of smell as a diagnostic tool.
This traces even back to Hippocrates who suggested
that a patient’s odour could lead to their clinical diag-
nosis. Thus, the motives of using these data sets is due
to the recent research on non-invasive diagnostics and
the discovery of new gas volatile compounds (VOCs)
biomarkers [2] [3] [4] [5] [6] that could provide a de-
tection of fermentation profiles of patients with IBD.
The pathogenesis of IBD involves the role of bacteria
[4]. These bacteria ferment non-starch polysaccharides
in the colon that produces a fermentation profile that can
be traced in urine smell [4]. Using FAIMS instruments,
it is possible to track the resultant VOCs that emanate
from urine and identify patterns in their chemical finger-
prints to automatically perform medical diagnosis for
Crohn’s disease and Ulcerative Colitis.

In this paper, we provide a review of classification
techniques and test some on medical FAIMS data sets.
From our results on the FAIMS data sets, we show that
it is possible to classify unseen samples with a very high
certainty on certain data sets and propose potential fu-



ture research on other data sets that would potentially
allow training for more accurate classification models.
Specific informative regions that play a vital role for the
creation of the models’ decision boundaries on the data
sets are also identified and illustrated which are worth
investigating further.

The paper is organized as follows. Firstly, in sec-
tion 2, an in-depth overview of the theory behind the
classification methods is given describing potential ad-
vantages and disadvantages during training and testing
phases along with a description of each algorithm’s im-
plementation. In section 3, testing of a subset of these
algorithms is described on numerous data sets to inves-
tigate their practical performance. In section 4, an in-
troduction to FAIMS technology is given along with the
application of selected algorithms on medical FAIMS
data sets by testing various scenarios. Finally, a dis-
cussion about future research and final remarks can be
found in sections 5 and 6 respectively.

2. Methods

Fundamental definitions and notation:

Classification is a form of supervised machine learn-
ing. We train a model by using a large number of exam-
ples, each belonging to a certain class. Our aim is to use
the model to accurately predict new, previously unseen
examples.

We have K discrete classes, that we will index by
the letter c, i.e. c ∈ {1, 2, . . . ,K}. We have a train-
ing set containing N training examples. Each example
consists of two elements, namely the input vector (or
feature vector), denoted by xi, and the corresponding
label, denoted by yi. We will use the letter i to index the
training examples, so that i ∈ {1, 2, . . . , N}.

Each label yi is an integer between 1 and K, indicating
the class of training example i. Each input vector xi is
a column vector containing the values of the features
of example i in its components. We let D be the total
number of features and use j ∈ {1, 2 . . . , D} to index
the features of our input vectors, so that xi, j denotes the
jth feature of the ith training example.

We let X = [x1 x2 . . . xN]T stand for the N × D ma-
trix containing the training examples in its rows and
the input features in its columns. We will also use
y = [y1 y2 . . . yN]T to denote the N-dimensional column
vector containing the class of the ith training example in
row i.

Finally, when discussing how to make new predic-
tions based on the trained model, we will use x∗ to de-
note the feature vector of a previously unseen example.

Its true class will be labelled by y∗ and our prediction of
the class will be ŷ∗.

2.1. Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) [7] aims to sep-

arate the classes in feature space using linear decision
surfaces (hyperplanes).

We need to make two slight modifications to our
notation. Firstly, we need to attach a dummy ‘input’
feature xi,0 = 1 to our input vectors xi so that xi =

[1 xi,1 xi,2 . . . xi,D]T . Secondly, we will use an alterna-
tive representation of our classes: Instead of labels yi,
we shall use target vectors ti of length K, where the cth

component of ti is equal to 1 if training example i is in
class c and 0 otherwise (i.e. ti,c = 1 if yi = c).

Classification: For LDA, the discriminant function
takes the form

ŷ∗ = arg max
c

(wT
c x∗). (1)

That is, we predict x∗ to be in class c which maximizes
the expression wT

c x∗.
wc is a (D + 1)-dimensional vector containing the

weight parameters of the model for class c. The bound-
ary between class c and class d is given by wT

c x = wT
d x,

so that (wd −wc) denotes the normal vector of the deci-
sion plane.

There is a nice interpretation to the quantity wT
c x∗.

We can treat it as an estimate of the probability that x∗
belongs to class c, that is

p(y∗ = c |wc,Data) = wT
c x∗. (2)

Training: The goal of the training phase is to learn
the weight parameters wc for each class c. We achieve
this by minimising an error function. The optimization
objectives are given by:

E(wc) =
1
2

N∑
i=1

(wT
c xi − ti,c)2, c ∈ {1, . . . ,K}. (3)

This is called the least squares error function, and we
minimize one per class. It is the sum of squares of the
prediction errors resulting from a particular choice of
weight vector wc. We aim to find wc for which this is
the smallest.

Differentiating with respect to wc we find that the op-
timal weight vector satisfies

∂E(wc)
∂wc

=

N∑
i=1

(wc
T xi − ti,c)xi = 0. (4)
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This problem has in fact a closed form solution, and
we can state it concisely using matrices. To do that,
let W = [w1 w2 . . .wK] be the matrix containing the
weight vectors for all the classes in its columns and let
T = [t1 t2 . . . tN]T be the matrix containing all the target
vectors in its rows.

The solution to LDA can then be written as

W = (XT X)−1XT T. (5)

The most expensive part in the computation is invert-
ing XT X.

Algorithm 2.1: LDA(X, y)

Create N × K matrix T,where
Ti,c = 1 if yi = c and 0 otherwise.

comment: Training Phase:

Compute W = (XT X)−1XT T.

comment: Classification:

Compute vector WTx∗and find largest row k.
Predict ŷ∗ = k.

Discussion: LDA has the advantage of giving a
closed-form solution for the weight vectors wc. Fur-
thermore, the model is computationally inexpensive and
easy to interpret.

We can also interpret the quantity wT
c x∗ as the prob-

ability that x∗ belongs to class c. However, this inter-
pretation may break down on some occasions, as there
are no constraints to ensure that wT

c x∗ ∈ [0, 1] for all
possible vectors x∗.

As it is a linear method, LDA cannot handle non-
linear class boundaries very well. Furthermore, even in
the case of linearly separable classes, it may not find the
optimal decision boundary. Outliers that are “too cor-
rect” in that they lie a long way on the correct side of the
decision surface have a disproportionate effect on LDA.
The error function penalizes these outliers too heavily
and the result is that LDA shifts the boundary in their
direction, at the expense of accuracy.

The algorithm’s steps can be seen in Algorithm 2.1.
For a more detailed derivation and thorough discussion,
see [7] [8].

2.2. Fisher Discriminant Analysis
Related to LDA is the idea of Fisher Discriminant

Analysis (FDA) [7] [9].

Computing the quantities wT
c xi can be interpreted as

a form of dimensionality reduction. We take high di-
mensional feature vectors xi and project them onto one
dimension (i.e. onto a line).

Generally, dimensionality reduction leads to a con-
siderable loss of information. However, we can adjust
w to find the line that minimizes the overlap between
the classes when projecting them onto it.

The goal of FDA is to do just that by maximising
the Fisher Criterion, which is defined below. The in-
tuition behind this is to get the largest separation be-
tween the classes by maximizing the between-class vari-
ance, while simultaneously minimizing the within-class
variance, thereby reducing the spread of the individual
classes. This should give us the smallest possible class
overlap when projected onto one dimension.

As in the case of LDA, we need to introduce a dummy
feature xi,0 = 1 to each example xi. However, we will
adopt a 2-class setting to explain FDA. For that, we take
yi ∈ {0, 1}.

Training: FDA trains the weight vector w by max-
imising the Fisher Criterion, J(w). To define the crite-
rion, let m0 and m1 be the class mean vectors, given
by

m0 =
1

N0

∑
i : yi=0

xi , m1 =
1

N1

∑
i : yi=1

xi , (6)

where N1 =
∑N

i=1 yi is the total number of training ex-
amples in class 1 and N0 = N − N1 is the total number
of training examples in class 0.

Let SB be the between-class covariance matrix:

SB = (m1 −m0)(m1 −m0)T , (7)

and let SW be the within-class covariance matrix, given
by

SW =
∑

i : yi=1

(xi −m1)(xi −m1)T

+
∑

i : yi=0

(xi −m0)(xi −m0)T .
(8)

Then the Fisher Criterion is given by

J(w) =
wTSBw
wTSWw

(9)

We see that the between-class covariance is in the nu-
merator while the total within-class covariance is in
the denominator, so that maximisation of this criterion
should give us the desired optimal separation.
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The result of the optimization is:

w ∝ SW
−1(m1 −m0). (10)

This is known as Fisher’s Linear Discriminant. It is,
however, not quite yet a discriminant, but only a direc-
tion for projection. The projected data can then be used
to construct a discriminant by choosing a threshold τ.
There are various methods for choosing the threshold.
Often, we assume that the features are normally dis-
tributed and find the value of τ that maximizes the pos-
terior class probabilities, or equivalently, minimizes the
misclassification rate.

Algorithm 2.2: FDA(X, y)

comment: Training Phase:

Compute w ∝ SW
−1(m1 −m0), where

m1,m0 and SW are given by (6) and (8)
Find optimal threshold τ, by minimising

the misclassification rate.

comment: Classification:

if wT x∗ ≥ τ
then ŷ∗ = 1,
else ŷ∗ = 0.

Classification: To classify a new data point x∗, we
compute the quantity wT x∗. Then, we set a threshold τ
and predict: {

ŷ∗ = 1 if wT x∗ ≥ τ
ŷ∗ = 0 if wT x∗ < τ (11)

Discussion: FDA is a useful method for reducing
the dimensionality of a machine learning problem by
projecting the features onto a lower-dimensional do-
main. It handles classes with linear boundaries very
well.

In practice, it lacks flexibility. The method of Kernel
Fisher Discriminants [10] builds on FDA and extends
it to non-linear class boundaries using the kernel trick
[11].

The algorithm’s steps can be seen in Algorithm 2.2.
For a more detailed description of FDA, including a
multi-class treatment, see [8] [9].

2.3. Adaptive Boosting (AdaBoost)
Boosting belongs to a family of methods called en-

sembles. It combines a number of base classifiers to

form a commitee. We will describe a particular method
of boosting, named AdaBoost [12].

AdaBoost can produce substantial improvements in
performance compared to using just a single classifier.
It can give good results even if we only use base clas-
sifiers that have a performance which is only slightly
better than random (known as “Weak Learners”) [12].

To classify a new example, we combine all the trained
base classifiers to form a majority vote. A weights is
also associated with each base classifier. The votes of
classifiers that performed relatively better during train-
ing, count more.

We will explain the algorithm in a 2-class setting. For
this algorithm, it is useful to use the labels yi ∈ {−1, 1}
and let +1 stand for the positive and −1 for the negative
class.

Training: We will train a total of M base classi-
fiers, denoted by fm(x) with m ∈ {1, . . . ,M}. It is com-
mon to use tree stumps as base classifiers for each iter-
ation. These are weak learners that attempt to separate
the classes using axis-alligned hyperplanes, i.e. hyper-
planes that use one of the axis of the feature space as
the direction of their normal. We let w(m)

i stand for the
weight of the ith training example just before it is passed
on to classifier fm(x), i.e. during the mth iteration. Ini-
tially, the examples receive equal weights so as to have
an unbiased initial state and be able to adapt according
to the misclassification error only:

w(1)
i =

1
N

for all i ∈ {1, . . . ,N}. (12)

In each iteration m, we train the base classifier fm by
minimizing the error function :

Jm =

N∑
i=1

w(m)
n I ( fm(xi) , yi) , (13)

with respect to the parameters of the classifier fm(x),
where I(•) is the indicator function which outputs 1 if
the condition inside the brackets holds true and 0 other-
wise.

Next, we need to compute the quantities:

εm =

∑N
i=1 w(m)

i I( fm(xi) , yi)∑N
i=1 w(m)

i

, (14)

and

αm = ln
(

1 − εm

εm

)
. (15)

We use these to update the weights for the next iteration:

w(m+1)
i = w(m)

i exp (αmI( fm(xi) , yi)) . (16)
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Classification: Once we have trained all base clas-
sifiers, we can use the ensemble to predict the class of a
new data point x∗:

ŷ∗ = sign

 M∑
m=1

αm fm(x∗)
 . (17)

Algorithm 2.3: AdaBoost(X, y, f1, . . . , fM)

comment: Initialize weights

w(1)
i ← 1/N for all i ∈ {1, . . . ,N}

for m← 1 to M

do



comment: Train fm(x) by

min Jm =
∑N

i=1 w(m)
i I( fm(xi) , yi)

comment: Evaluate quantities

εm ←

∑N
i=1 w(m)

i I( fm(xi),yi)∑N
i=1 w(m)

i

αm ← ln
(

1−εm
εm

)
comment: Update data weights

w(m+1)
i = w(m)

i exp (αmI( fm(xi) , yi))

comment: Predict class of new pattern x∗

ŷ∗ = sign
(∑M

m=1 αm fm(x∗)
)

Discussion: AdaBoost is not a classifier per se, but
rather a method of combining a number of classification
methods.

Decision tree stumps are the traditional choice for the
base classifiers. But AdaBoost can use any classifica-
tion method as a base classifier and for some applica-
tions, there are more appropriate base classifiers than
decision trees (such as the Haar classifiers in the prob-
lem of face detection).

As mentioned above, we can expect the ensemble
to converge to a strong classifier, even if the individ-
ual base classifiers are only slightly better than random
guessing.

However, the choice of base classifiers has an effect
on the speed of convergence. In practice, we can make
use of prior knowledge about the structure of a data set
to help us choose the weak learners.

Boosting generally shows resistance to over-fitting.
However, it is affected by misclassified data points that

are far away from the decision boundary (i.e. outliers).
These outliers tend to create “spikes” in the decision
boundary.

The algorithm’s steps can be seen in Algorithm 2.3.
For a more detailed derivation and discussion, along
with a multi-class extension, see [12] [13].

2.4. Random Forests

Random Forests [14] is another ensemble learning
method. The idea is to train a multitude of decision
trees, each with some degree of randomization. To clas-
sify new data points, we let each tree make a prediction
and then average their output to form an ensemble pre-
diction. We randomize by choosing a random subset of
our training data for the training of each tree. Further-
more, when performing the optimization in the training
phase, we only optimize over a random subset of the
available parameters. The reason for this randomization
is to ensure that the trees grow differently from one an-
other, increasing the confidence of our final prediction.

A tree is a hierarchical structure consisting of nodes
connected by edges. Nodes are divided into internal (or
split) nodes and terminal nodes (or leafs). Each node
has exactly one incoming edge, except the uppermost
node called the root which has none. We will focus on
binary trees which have exactly two outgoing edges.

Classification: Let T be our forest size, i.e. the total
number of trees grown and index the trees using t ∈
{1, 2 . . . , T }.

We can use a tree t to classify a new data point x∗.
We start by placing x∗ at the root. Each internal node
S m (including the root) of the tree has a predefined test
function φm(x). In our model, the test function will sim-
ply be one of the features of x:

φm(x∗) = x∗jm , (18)

where jm is optimal in some sense and determined dur-
ing the training phase.

Depending on whether this feature is above or below
a certain threshold τm, we send x∗ through either the
left or right edge, to the next node. We push x∗ through
the tree in this manner until we reach a leaf S L. The
leafs contain the conditional distribution of the classes,
pt(y∗ = c | x∗ ∈ S L). If we used a single tree for classifi-
cation, we would simply predict x∗ to be in the class for
which this probability is the greatest.

The Random Forests method pushes x∗ through all
the trees simultaneously and predicts the class that max-
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imizes the average of the posterior probabilities:

ŷ∗ = arg max
c

 1
T

T∑
t=1

pt(y∗ = c | x∗ ∈ S L)

 . (19)

Training: The training phase is in charge of find-
ing the best feature jm to split on at each node m of each
tree t along with the optimal threshold τm for it. The
Random Forests algorithm does this by maximizing the
expected information gain (or entropy reduction), de-
noted by IGm( jm, τm) as defined in (22). To formalize
the information gain, we need to define further vari-
ables. Given a particular choice of parameters, let S (R)

m
and S (L)

m be the subsets of data points in node m that are
sent through the right edge and left edge, respectively.
We define the Shannon entropy of a node S to be

H(S ) =

K∑
c=1

p(y = c | x ∈ S ) log (p(y = c | x ∈ S )), (20)

where we use the empirical distributions of the classes
in the node to approximate the probability:

p(y = c | x ∈ S ) =
1
|S |

|S |∑
i=1

I(yi = c). (21)

We can then define the expected information gain asso-
ciated with a particular choice ( jm, τm) of parameters for
node m to be

IGm( jm, τm) = H(S m) −
∑

r∈{R,L}

|S (r)
m |

|S m|
H(S (r)

m ). (22)

Each tree is grown independently of all the other trees
and we inject randomness into the training process of
each tree.

The randomization of each tree is two-fold. Instead
of using all N available training examples to train the
tree, we randomly select αN data points from the train-
ing set with replacement (this is called bootstrapping).
α is one of the parameters of the model. It is a positive
number usually set to be less than 1. When maximizing
the information gain criterion to choose the optimal pa-
rameters for a node, we do not make all possible choices
of features. Instead, we maximize IG( jm, τm) only over
a random subset of features jm, of size M.

Finally we have to decide on when to stop growing
a tree. If a tree is grown too deeply, it will overfit the
data and not generalize well. If it is not deep enough, it
will not give very strong predictions. Standard stopping
criteria allow a tree to grow until a node contains data

points of only one class (a pure node) or until the num-
ber of data points in a node is below a certain threshold.
Random Forests are very powerful models. Each indi-
vidual tree may not be a very strong classifier by itself.

However, by randomizing the training of the trees and
combining their output, we can obtain a very accurate
and flexible classifier. One advantage of this technique
is that the trees can be grown independently from one
another. This allows us to improve the computational
time of the forest, by growing the trees in parallel over
multiple cores. Furthermore, Random Forests give us
a measure of the relative importance of features. If a
feature is in the first few layers in many decision trees,
it is likely to separate the classes well. We also store
the histogram of the classes in all the leafs, giving us a
measure for the confidence of our predictions.

A potential disadvantage is that trees are prone to
overfit the training data if we grow them too deeply. The
algorithm’s steps can be seen in Algorithm 2.4. For a
more detailed discussion and explanation, see [14] [15].

Algorithm 2.4: Random Forest(X, y,T, α,M)

comment: Training Phase

for t ← 1 to T

do



Draw a bootstrap sample of size αN
comment: Grow tree starting at root

m← 0
if (stopping criterion is not met)

do


Select M features randomly
Optimize over these features:
max jm,τm [IGm( jm, τm)]
Grow two daughter nodes.

m← m + 1

comment: Classification

Send x∗ through all trees.
Find pt(y∗ = c | x∗ ∈ S L) for all t and c,

where S L are the leafs
ŷ∗ = arg maxc

(
1
T
∑T

t=1 pt(y∗ = c | x∗ ∈ S L)
)

2.5. Naive Bayes
Naive Bayes [16] is a simple probabilistic classi-

fication method. The algorithm estimates the class-
conditional distributions of each input feature. If differ-
ent classes show different distributions of the features,
Naive Bayes will be able to use that information to sep-
arate the classes.
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To explain the intuition behind the Naive Bayes al-
gorithm we adopt a different framework than before,
namely we assume that our input features are binary,
xi, j ∈ {0, 1}. For example, xi could summarize the pres-
ence of certain chemicals in sample i, i.e. xi, j = 1
if chemical j is present in sample i and 0 otherwise.
There exist modifications to handle continuous input
data, for example by assuming the features are normally
distributed.

The model has two sets of parameters:

1. θ j,c = p(xi, j = 1|yi = c) is the probability of feature
j being 1 given that the sample is in class c

2. πc = p(yi = c) are the prior class probabilities

The key assumption for this model is that the fea-
tures are conditionally independent given the class la-
bels (hence “Naive”):

p(xi|θ, yi = c) =

D∏
j=1

p(xi, j|θ, yi = c). (23)

Ideally, different classes show different feature distri-
butions allowing us to find a separation between them,
using the Naive Bayes method.

Using Bayes Theorem, we get

p(y|x, θ, π) ∝ p(y|π) × p(x|y, θ), (24)

where

p(y|π) ∝
N∏

i=1

K∏
c=1

π
I(yi=c)
c (25)

and

p(xi, j|yi = c, θ) ∝ θI(yi=c)I(xi, j=1)
j,c

×(1 − θ j,c)I(yi=c)I(xi, j=0).
(26)

The full model is then

p(y|x, θ, π) ∝
N∏

i=1

K∏
c=1

(πI(yi=c)
c

D∏
j=1

θ
I(yi=c)I(xi, j=1)
j,c

(1 − θ j,c)I(yi=c)I(xi, j=0)).

(27)

Training Training of the Naive Bayes classifier in-
volves estimation of the parameters {θ j,c, πc} of the
model. In order to do that, we define Nc to be the to-
tal number of training data points in class c and N j,c to
be the training data points in class c for which feature j
was equal to 1. That is,{

Nc =
∑N

i=1 I(yi = c)
N j,c =

∑N
i=1 I(yi = c)I(xi, j = 1).

(28)

Intuitively, we would then expect:

π̂c = Nc/N θ̂ j,c = N j,c/Nc (29)

to be the best estimates of the parameters and it can in-
deed be shown that these give the maximum likelihood.

Algorithm 2.5: Naive Bayes(X, y)

comment: Training Phase

comment: Initialize count parameters

N j ← 0 N j,c ← 0
for i← 1 to n

do


c← yi

Nc ← Nc + 1
for j← 1 to D

do
{

if xi, j = 1
then N j,c ← N j,c + 1

π̂c ← Nc/N, θ̂ j,c ← N j,c/Nc

comment: Predict class of new pattern x∗

for c← 1 to K evaluate
p(y∗ = c|x∗) ∝ π̂c

∏d
j=1 θ̂

I(x∗j=1)
j,c (1 − θ̂

I(x∗j=1)
j,c )

Normalize probabilities.
ŷ∗ = arg maxc p(y∗ = c | x∗)

Classification: Once we have these estimates, we
can make predictions on the posterior class probabilities
of previously unseen data points.

Given a new data point x∗, the posterior probability
that x∗ is in class c is given by

p(y∗ = c|x∗) ∝ π̂c

D∏
j=1

θ̂
I(x∗j=1)
j,c (1 − θ̂

I(x∗j=0)
j,c ).

We evaluate this expression (up to proportionality) for
all classes and then normalize the probabilities so that∑

c∈{1,...,K}

p(y∗ = c |X∗) = 1. (30)

Finally, we choose the class y∗ = c for which the proba-
bility p(y∗ = c|x∗) is largest.

Discussion: Even though conditionally indepen-
dent features is a stark assumption for most settings,
the Naive Bayes classifier tends to give relatively ac-
curate predictions in practice. The algorithm’s steps can
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be seen in Algorithm 2.5. The training phase is com-
putationally very efficient as it essentially boils down
to bookkeeping. Alternative classifiers have been pro-
posed that allow some degree of interdependence be-
tween features [17].

In practice, a major danger when working with this
classification method is that prediction involves the mul-
tiplication of many small numbers. This means that
rounding errors have a big effect on predictions and it
is not uncommon for underflow to occur. One way to
deal with this problem is to make use of the log-sum-exp
trick. Algorithm 2.6 explains how to implement Naive
Bayes predictions using the log-sum-exp trick.

Algorithm 2.6: NB prediction (x∗, π̂, θ̂)

for c← 1 to K

do



Lc = log π̂c

for j← 1 to D

do


if x∗j = 1

then Lc ← Lc + log θ̂ j,c

else Lc ← Lc + log (1 − θ̂ j,c)
pc = exp (Lc − log (

∑K
c′=1 exp Lc′ ))

ŷ∗ = argmaxc(pc)

2.6. Logistic Regression
Logistic regression is another probabilistic approach

to classification. We will describe the method in a 2-
class framework with each class label yi ∈ {0, 1} (see
Section 2.2). Furthermore, we need to include a bias in
our input data points, i.e. we introduce a dummy feature
xi,0 = 1 to each data point xi.

Classification To classify a new data point x∗, the
logistic regression technique attaches a weight w j to
each feature x∗j (where j ∈ {0, 1, . . . ,D}). It then passes
the weighted sum

∑D
j=0 w jx∗j = wT x∗ to the sigmoid

function, given by:

g(z) =
1

1 + exp(−z)
, (31)

We interpret the output of the function as the proba-
bility that x∗ is in class 1:

p(y∗ = 1 |w) = g(wT x∗). (32)

Finally, we can classify x∗ by setting a threshold τ on
the probability and predicting:{

ŷ∗ = 1 if g(wT x∗) ≥ τ
ŷ∗ = 0 if g(wT x∗) < τ (33)

Typically, we choose τ = 0.5 in order to make predic-
tions symmetric. The sigmoid has the property that it is
naturally constrained to lie in the interval (0, 1). This
ensures that our interpretation of its output as a proba-
bility does not break down as was the case with LDA.

We can easily compute the decision boundary of our
model. g(wT x) = 0.5 is equivalent to wT x = 0. So the
decision boundary is given by wT x = 0. For a general
threshold τ, the boundary is given by wT x∗ = g−1(τ).

We can extend the method to K > 2 classes by using
a one-versus-the-rest classifier. We train a total of K − 1
2-class classifiers, each of which solves the problem
of separating points belonging to one particular class
from points not in that class. The final prediction, ŷ∗,
is made by comparing the output of all the classifiers
and choosing the class corresponding to the highest
probability.

Training: The cost function can be derived using
maximum likelihood estimation of the weights w. It
can be shown that this is convex and local-optima free.

Intuitively, the cost function heavily penalizes high
confidence predictions of the wrong class. The training
phase is in charge of finding the weights w of the model.
This is done by minimizing:

J(w) = −
1
N

N∑
i=1

yi log(g(wT xi)

+(1 − yi) log
(
1 − g(wT xi))

) (34)

Noting that for the sigmoid function, g(z), we have:

dg
dz

= g(z)(1 − g(z)), (35)

we can differentiate J(w) with respect to w to get:

∂J
∂w

= −
1
N

N∑
i=1

yi(1 − g(wT xi)

+(1 − yi)g(wT xi))xi

(36)

There is no closed-form solution to this minimization
problem, thus gradient descent or Newton’s Method for
finding minima is required. The steps of the algorithm
are summarized in Algorithm 2.7.

2.7. K-Nearest Neighbours
K-Nearest-Neighbours (K-NN) [18] is a non-

parametric approach to density estimation. This means
that we do not make any assumptions about the func-
tional form of the distribution to be estimated. The
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method can be extended to the problem of classifica-
tion. To classify a new data point x∗, K-NN identifies
the K points from the training set that are closest to x∗
and then assigns it to the class which has the most points
in this set.

Algorithm 2.7: Logistic Regression(X, y, τ)

comment: Training Phase:

w = arg minw J(w)

comment: Classify new data point x∗

if
(
1 + exp(wT x∗)

)−1
≥ τ

then ŷ∗ = 1
else ŷ∗ = 0

comment: Confidence of estimate

p(y∗ = 1 |w) =
(
1 + exp(wT x∗)

)−1

Algorithm 2.8: K-NN(X, y,K)

Store the labelled training examples (X, y)

comment: Classify a new pattern x∗:

for i← 1 to N
Evaluate di = ||x∗ − xi||

Find i1, . . . , iK which minimize
∑K

j=1 di j .

ŷ∗ = mode{yi1 , . . . , yiK }.

Training: The training phase of the K-NN algo-
rithm only involves storing the training data in feature
space along with the corresponding class labels.

Classification: Before we make any classifications,
we have to decide on the parameter K for the model.
Once we have chosen a specific value for K, we can
feed the algorithm a new data point x∗. It identifies the
K training examples in feature space that are closest to
it and then looks for the class c that occurs most fre-
quently among those points. Finally, it predicts x∗ to be
in class c. If there is a tie, it can be broken at random
or by assigning the class of the nearest point among the
tied groups to x∗. When dealing with continuous input

data, we generally use the euclidean metric. However,
the method works with any valid metric and the optimal
choice will depend on the specific data set.

Discussion: The K-NN approach requires the en-
tire data set to be stored in working memory. Comput-
ing the distances to the training examples will become
computationally expensive for large data sets. One way
to deal with this problem is to use an appropriate near-
est neighbour search algorithm which searches for the
nearest neighbours by only evaluating the distance met-
ric over a subset of all training examples.

Another disadvantage of K-NN is that in the case of
skewed class distributions, the algorithm tends to bias
predictions in favour of the classes that are overrepre-
sented. We can mitigate this drawback by giving each
training examples a weight that is inversely proportional
to its distance from the new data point.

The constant K determines the degree of smoothing
in the classification process. A small value of K will
lead to many small regions of each class, while a large
value of K produces fewer larger regions. This reduces
the effect of noise in the data but may also lead to over-
seeing certain structures in the data. The algorithm’s
steps can be seen in Algorithm 2.8.

2.8. Support Vector Machine
The Support Vector Machine (SVM) [19] is a sparse

kernel classifier. That is, it transforms the training data
points into another domain (using specific kernel with
basis functions) and from that domain chooses only a
few basis functions to create a classifier.

In mathematical terms, the model created is defined
by the following function:

f (x; w) =

N∑
i=1

wiφi(x) = wTφ(x) + b (37)

where the output is a linear combination of the selected
basis functions and b is a bias variable.

Training: It utilizes a sparse vector of weights
which effectively choose the basis functions to be in-
cluded in the model. This is done by attempting to min-
imize a measure of the error in the training set and at
the same time maximize the margin between the classes.
The margin is defined as the perpendicular distance be-
tween the hyper-plane of the classifier and the closest
of the data points of any class. The maximum margin
solution is found by solving:

arg max
w,b

{
1
‖w‖

min
n

[yn(wTφ(xn) + b)]
}

(38)
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where yn is the corresponding class of the data point.
This is rearranged into the following Lagrangian func-
tion with the introduction of N Lagrangian multipliers
[19]:

L(w, b, a) =
1
2
‖w‖2 −

N∑
n=1

an

{
yn(wTφ(xn) + b) − 1

}
(39)

Setting the derivatives of L(w, b, a) with respect to w
and b to zero and substituting back to the Lagrangian
function, the dual representation of the maximum mar-
gin problem is formed which is solved only with respect
to a.

This takes the form of a quadratic programming prob-
lem and can be solved using various solvers. From their
solution, a is obtained where the majority of the ele-
ments are zero. The non-zero elements of a are called
the support vectors and correspond to the data points
that lie on the maximum margin of the hyperplane.

Classification: In order to classify a new data point
x∗, the sign of the following function is evaluated:

f (x∗) =

N∑
n=1

an yn φ(x∗) + b (40)

2.9. Relevance Vector Machine
The Relevance Vector Machine (RVM) [20] [21] was

proposed as a model of identical functional form to the
SVM but with superior characteristics. It exploits a
probabilistic Bayesian learning framework that provides
the level of trustworthiness of each classified point.

That is, given a data set {xn, yn}
N
n=1, we have the iden-

tical model for SVM without the bias:

f (x; w) =

N∑
i=1

wiφi(x) = wTφ(x) (41)

Training: For two-class classification, the goal is to
predict the posterior probability of a new data point x∗
belonging to a particular class. This is done by formu-
lating a likelihood for our model given the training data
and a prior distribution given some knowledge about our
data. The likelihood is given by the following expres-
sion:

P(y|w) =

N∏
n=1

σ { f (xn; w)}yn [1−σ { f (xn; w)}]1−yn (42)

The likelihood can be used to find the parameters that
best fit the data. In order to do so, the expression is max-
imized given the appropriate values for the parameters

and has the same effect as finding the least-squares fit
for the data. However, with as many parameters in the
model as training points, it could lead to severe over-
fitting and would probably not provide accurate estima-
tion for new data points.

In this context, imposing a constraint on the param-
eters would be advantageous so as to force our model
to be described by only a portion of the available ba-
sis functions resulting in a sparse vector of weights w.
Thus, a sparse prior probability distribution over w is
necessary. Using the likelihood and the prior, the poste-
rior distribution (ie after observing the training data) is
obtained.

Here, the choice of the prior over w could vary but for
the RVM [20], it was chosen as a zero-mean Gaussian
prior distribution given by:

p(w|α) =

N−1∏
i=0

N(wi|0, α−1
i ) (43)

where α are the hyperparemeters which in turn are de-
scribed by the following hyperprior:

p(α|a, b) =

N−1∏
i=0

Gamma(αi|a, b) (44)

where,

Gamma(α|a, b) = Γ(a)−1baαa−1e−bα (45)

is the Gamma distribution with Γ(a) =
∫ ∞

0 ta−1e−t dt the
gamma function. To make the hyper-priors flat, the pa-
rameters a and b are set to very small values.

Using an approximation procedure [20], the posterior
probability distribution p(w|y,α) is given by a multi-
variate Gaussian with covariance and mean:

Σ = (ΦT BΦ + A)−1 (46)

µ = ΣΦT By (47)

where A = diag(α1, α2, ..., αN) and B =

diag(β1, β2, ..., βN) where βn = σ { f (xn)} [1 − σ { f (xn)}]

Classification: These can then be used to classify
unseen data points using:

y∗ = wTφ(x∗) (48)

where w = µ and φ(x∗) contains the value of all included
basis functions at the required location. Furthermore,
the confidence of the estimate is given by:

σ2
∗ = φ(x∗)TΣφ(x∗) (49)

For large data sets, inversion of large matrices is re-
quired. In order to overcome this, a sequential algorithm
was proposed [22] [23].
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2.10. Neural Networks
An alternative to sparse kernel machines is to fix the

number of basis functions to be used in the model but
allow them to be adaptive in the training phase. The
idea behind neural networks [24] is that it utilizes multi-
layered logistic regression classifiers with many deci-
sion units on each layer to provide a more sophisticated
decision boundary.

Recall the model used for classification:

y(x,w) = f

 M∑
j=1

w j φ j(x)

 (50)

where f (.) is a nonlinear function that is zero or one
depending on the class of the given data point.

Training: In the framework of neural networks, the
basis functions φ j(x) are parametric and their parame-
ters are chosen during training as well as the weights
w j. Each basis function is itself a linear combination of
the input data where the coefficients in that linear com-
bination are adaptive parameters.

Thus, we construct M linear combinations of the in-
put variables x1, ..., xD where M is the number of basis
functions to be used and D is the dimensionality of the
input data. These linear combinations are given by:

α j =

D∑
i=1

w(1)
ji xi + w(1)

j0 (51)

where j = 1, ...,M and the superscript indicates the cor-
responding layer of the network. All α j are called the
activations of each neuron and are transformed using an
activation function h(.) such that:

z j = h(α j) (52)

The choice of h(.) depends on the data but very fre-
quently, the logistic sigmoid function σ(.) is used as in
logistic regression discussed before. These z j are the
outputs of the hidden units of the first layer and can sub-
sequently be used as inputs to the second layer:

αk =

M∑
j=1

w(2)
k j z j + w(2)

k0 (53)

where k = 1, ...,K.
We can combine all the layers together to acquire the

overall network function:

yk(x,w) = σ

 M∑
j=1

w(2)
k j h

 D∑
i=1

w(1)
ji xi + w(1)

j0

 + w(2)
k0

 (54)

Therefore, the model is a nonlinear function from
a set of inputs to a set of outputs controlled by ad-
justable parameters that are acquired during training.
In order to train this network, given a training set
{(x1, t1), ..., (xN , tN)} we minimize an error function:

E(w) =
1
2

N∑
n=1

‖y(xn,w) − tn‖
2
2 (55)

Once the weights are obtained, prediction can be
done using the overall network function defined above.

3. Test data sets

All ten algorithms described in the previous section
allow the training of classification models. These mod-
els are trained given many training samples and are able
to automatically decide for the nature of unseen sam-
ples.

In order to choose the most suitable for the FAIMS
data sets for automatic clinical diagnosis, we first need
to test their performance. To do this, we chose five of
the techniques that were available in the MATLAB sta-
tistical toolbox. These are the LDA, AdaBoost, Random
Forests, Naive Bayes and K-NN. For each algorithm,
we used four simple data sets to train and test. From
these simple data sets, we were able to understand the
performance, the advantages and disadvantages of each
algorithm and their suitability under different scenaria.
Using this preliminary testing, we were able to choose
two of the most promising algorithms for their applica-
tion on three different types of medical FAIMS data sets
in section 4.

The first three simple data sets are 2-dimensional
with only 2 classes with a linearly separable data set, a
non-linearly separable and a data set with a linear class
boundary that includes some random noise. An example
of the first three type of data sets with the K-NN clas-
sifier can be seen in Figures 2, 3 and 4. We also tested
the algorithms on a subset of the MNIST dababase [25].
For an example, see Figure 1.

3.1. Methodology
First, we split the data sets into training and test sets.

The training set is used for the training of the parame-
ters of each classification model. The test set consists
of similar but unseen samples and is used for the vali-
dation of the performance of the model. We randomly
selected 80% of the data for training and used the rest
for testing. For three of the algorithms, we had to tweak
additional meta-parameters which are not part of the au-
tomatic training of the models. These are: the optimal
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Figure 1: Collection of 25 training data point of the digits data set. The
size of each input image is 20×20 pixels and each pixel is a component
of our feature vector. The value of a feature measures the intensity of
the corresponding pixel.

number of iterations in AdaBoost, the optimal number
of trees in Random Forest and the optimal number of
neighbours in KNN.

For all these meta-parameters, we trained each model
with different values and accordingly recorded the test
classification error. The meta-parameter that gave the
least classification error was chosen. With different val-
ues of the meta-parameters, not only the classification
performance but also the training time changes. There-
fore, for different application, different meta-parameters
might be suitable for different system requirements.
In our case, classification performance is priority over
training time and thus the meta-parameters were chosen
with this in mind.

Once we have determined the optimal meta-
parameters, we trained the model on each data set and
computed the resubstitution errors, the test errors and
the amount of time spent in the training phase and the
testing phase. Errors and speeds of the classifiers on
each test data sets can be seen in Table 1. Table 2 sum-
marizes the properties of the classifiers that we inferred
from our tests.

3.2. Discussion
From these results, the Random Forest and the K-

Nearest Neighbours algorithms showed the greatest po-
tential for further investigation. Both have great clas-
sification performance on the simple data sets, they are
robust to noise and can be trained fast when utilizing
parallel computation.

In addition, Random Forest is able to provide im-
portance for specific features which makes it ideal for
the understanding of key indicators in medical data sets.
This is vital for the further investigation of particular re-
gions in the data sets that would allow for even greater
automatic clinical diagnosis.

Figure 2: K-NN decision boundary on Linear Data Set

Figure 3: K-NN decision boundary on Non Linear Data Set

Figure 4: K-NN decision boundary on Noisy Data Set
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Figure 5: FAIMS setup for ion movement through plates

4. Field Asymmetric Ion Mobility Spectrometry
(FAIMS)

As discussed, the detection of airborne gas phase
biomarkers that emanate from biological samples like
urine and breath can be used for non-invasive diagnos-
tics of IBD diseases such as Crohn’s disease and Ul-
cerative Colitis. An emerging technology that is able
to sense and capture these biomarkers is FAIMS [26]
[27]. FAIMS is a recent technology that separates gas
molecules to be analysed at atmospheric pressure and
room temperature [26]. The sample sensed is ionised
and thus decomposed of ions of different types and
sizes.

These different ions are passed through metal plates
that are being applied an asynchronous high voltage
waveform. The ionized molecules are subjected to these
high electric field and the difference in their movement
is used to detect biomarkers [26] [27]. An example of
the setup can be seen in Figure 5 from the Owlstone’s
whitepaper 1. Further information can be found in [26]
[27].

We analysed three separate medical FAIMS data sets
supplied by Owlstone. The first data set consisted of
biological samples from cancer patients who took part
in a study at University Hospital Coventry & Warwick-
shire. The second data set consisted of biological sam-
ples from Inflammatory Bowel Disease (IBD) patients
from a separate study, also at the University Hospital
Coventry & Warwickshire. Lastly, we analysed a data
set with Methanol in a complex background.

The samples were analysed using Owlstone’s Lon-
estar chemical detector which uses Field Asymmetric
Ion Mobility Spectroscopy (FAIMS) to create a chemi-
cal ‘fingerprint’ of a gas or odour that is passed through
it.

1http://www.owlstonenanotech.com/faims

Figure 6: Example of output of chemical fingerprint for a sample from
the IBD data using the positive ions.

Figure 7: Example of output of chemical fingerprint for a sample from
the IBD data using the negative ions.

Our training data consists of these chemical finger-
prints. For each sample, we get two such fingerprints -
one for the positive ions and one for the negative ions in
the gas. See Figures 6, 7 for an example from the IBD
Data.

We analysed two versions of this data set. First we
analysed the raw data, which consisted of the chemical
fingerprints. Each such fingerprint was created by vary-
ing the compensation voltage (CV) in 512 steps from
-6V to +6V while varying the dispersion voltage ratio
(DV) from 0% to 100% in steps of 2% and measuring
the resulting ion current. In total we get 52224 raw input
features, each giving the intensity of the measured ion
current at a particular location (CV & DV value pair).

Secondly, we used software provided by Owlstone
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Table 1: Errors and speeds of classification methods on test data

Table 2: Summary of classifier performance
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to extract peaks in the measured ion current from the
chemical fingerprints. For each peak, we were given
its location in the fingerprint (CV and DV values) and
a measure for its height, width and area. We chose to
treat each extracted peak as a separate example, giving
all the peaks from one sample the same label.

We focused on two classification methods as they
gave the most promising results on the test data sets.
We analysed the data using a K-Nearest-Neighbour ap-
proach to get some fast preliminary results. Then we
moved on to the more sophisticated Random Forests
method. In the usual setting, we selected 80% of the
samples at random to train the model and used the re-
maining 20% to test the model. Note that in peak anal-
ysis, we extracted the peaks after splitting our data into
training and test sets. For all the tests, we aimed to get a
reliable measure of the resubstitution error, the test error
and the amount of time it took to respectively train and
test our model.

4.1. Cancer Data
The cancer data set contained a total of 122 samples,

each assigned to one of 3 classes:

• Volunteer→ y = 1 (39 samples)

• Cancer→ y = 2 (70 samples)

• Polyps→ y = 3 (13 samples)

4.1.1. Peak Analysis
We tested a number of different scenarios. First, we

ran a number of test on the peaks of the positive ion
matrix only. Then we focused on the negative ion peaks.
We investigated for the existence of a bias in our results
due to the fact that one class is overrepresented in our
data.

For that, we made sure that our training set was bal-
anced in that there was an equal number of samples
from both classes. It is important to note that we calcu-
lated test and resubstitution errors on a per peak basis.
As the test errors varied with the choice of our partic-
ular test set, we trained and tested our model 50 times,
each time using a separate random training and test set,
and calculated the mean of the errors. We used the same
value for K in each iteration. The results of our KNN
analysis of the peaks of the cancer data can be found in
Tables 3, 4.

We analysed the peaks from the positive matrix, the
negative matrix and the combined data set with the ran-
dom forest technique. To find a good value for the num-
ber of random trees to use, we plotted the test and re-
substitution errors as a function of forest size and aimed
to choose the point at which the curves began flattening.

We ran the algorithm in a 3-class setting as well as
in a 2-class setting for both a random 80%-20% split of
the data and a balanced split of the data into training and
test set.

One advantage of Random Forests is that it allows
measuring the importance of the features. For all fea-
tures, we measured the increase in prediction error if
the values of that feature are permuted across the out-
of-bag observations. This measure is computed for ev-
ery tree, then averaged over the entire ensemble and di-
vided by the standard deviation over the entire ensem-
ble. This measure allows for the identification of key
regions in the data set that can be used for further inves-
tigation. It allows a more focused investigation on the
key indicators. An example of a heat map of the vari-
able importances will be illustrated later that will show
its significance in our statistical research and in general
for the better training of classification models for auto-
matic clinical diagnostics. Tables 5, 6 show the results
of our random forests analysis of the cancer data peaks.

4.1.2. Discussion
From the peak analysis, it can be seen that there is

some separation between the classes of interest. Further
investigation is required to allow for lower test classifi-
cation errors. Peak extraction illustrated that we could
potentially identify interesting key indicators but a more
detailed and focused study is required. Therefore, for
the other data sets, we followed a different approach,
treating the entire training matrices as one large feature
vector.

4.2. Inflammatory Bowel Disease Data

We splitted the IBD data set into two different cate-
gories, namely the breath samples and the urine sam-
ples. This was done so as to investigate whether differ-
ent types of data sets are able to distinguish better the
classes and allow for a more focused future sample ac-
quisition.

4.2.1. Breath Samples
There were a total 119 breath samples belonging to 3

different classes:

• Volunteer→ y = 1 (42 samples)

• Crohn’s Disease→ y = 2 (37 samples)

• Ulcerative Colitis→ y = 3 (40 samples)
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Table 3: KNN results on the positive peaks

Table 4: KNN results on the negative peaks

KNN: As before, we trained our model with differ-
ent choices of training and test data sets. As the test er-
rors varied with the choice of our particular test set, we
trained and tested our model 50 times, each time using
a separate random training and test set, and calculated
the mean of the errors. We used the same value for K in
each iteration.

KNN results for the breath samples can be found in
Table 7. The method had trouble in the 3-class setting
in general. Using weights inversely proportional to the
distance between the neighbours and the test points gave
the best performance with a mean test error of 71.3%.

We got much better results in the 2-class setting.
Here, the version with weights proportional to the
squared inverse distance gave the best results with a
mean accuracy of 64.5%. In our tests, the accuracy var-
ied between 50.0% and 79.2%. Using equal weights for
all neighbours gave us an accuracy as high as 83.3% in
some cases.

As it can be seen, the resubstitution error is zero in
most cases whereas the test error is much larger. This
illustrates that there is a great degree of overfitting on
the training data. However, the results show promising
separation in some cases. If combined with appropriate
regularisers, K-NN could allow for a great tool for pre-

liminary classification due to the fact that the training
speed is very low.

Random Forests: Due to the large training time of
the random forests algorithm and time constraints on
our part, we were not able to estimate a mean test er-
ror and a measure for the spread of the errors as we did
in the KNN analysis for this data set. Thus, one setup
was chosen and the results are documented in Table 8.

Using 10 trees gave the best results in terms of ac-
curacy on the test data (62.4%). This is due to the
fact that the complexity of the model was the lowest
of the ones chosen and allowed for greater generaliza-
tion. However, we generated a new random split for
each test. Therefore, the low test error may be simply an
artifact of our choice of training and test data set. The
large difference between the test errors and resubstitu-
tion errors may indicate that there is a high degree of
overfitting and appropriate regularizers could help ob-
tain much better results.

4.2.2. Urine Samples
There were a total of 111 urine samples belonging to

3 different classes:
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Table 5: Random Forest results on the positive peaks

Table 6: Random Forest results on the negative peaks

Table 7: KNN IBD Breath Results

Table 8: Random Forest IBD Breath Results
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• Volunteer→ y = 1 (39 samples)

• Crohn’s Disease→ y = 2 (36 samples)

• Ulcerative Colitis→ y = 3 (36 samples)

KNN: The KNN results for the urine data set are in
Table 9. In the 3-class setting, the algorithm performs
much better on the urine data set than on the breath data.
This may indicate that there is a smaller degree of noise
in the data and the distinction between the Crohn’s Dis-
ease samples and the Ulcerative Colitis may be clearer
compared to the breath samples. The performance in the
2-class setting is very similar to that in the breath data.
We were able to achieve a test error as low as 18.2%.

Random Forests: The Random Forests results can
be found in Table 10. In our tests in the 2-class setting,
the algorithm appears to perform slightly worse than on
the breath samples. However, this difference may again
be because of the particular test set. We see the same
large difference between test errors and resubstitution
errors as in the breath samples, indicating that overfit-
ting may be problem in this application as well.

4.2.3. Heat Map
In order to get some visual indicator of regions in the

fingerprint with high discriminative power, we produced
a heat map of variable importance. We calculated the
measure of feature importance provided by the Random
Forest algorithm for each CV-DV value pair. We plotted
these values to find regions of interests, with red indi-
cating the most important and blue indicating the least
important regions.

Figure 8: Heatmap for positive ion fingerprint of a sample from the
IBD data.

Figures 8 and 9 show two heatmaps for a sample from
the IBD data set, one for the positive ion matrix and one
for the negative ion matrix. These were created using
100 trees for a random forest.

Figure 9: Heatmap for negative ion fingerprint of a sample from the
IBD data.

The negative ion matrix appears to carry more infor-
mation with regards to feature importance as there more
areas with high density of red points.

4.3. Methanol in Complex Background

The methanol samples were taken under strict labora-
tory conditions. We received 42 training examples and
12 test examples. We analysed the performance of the
KNN and Random Forests algorithms in a 3-class set-
ting and in a 2-class setting.

The samples were classified as

• Diseased→ y = 0

• Exposed→ y = 1

• Normal→ y = 2

For the 2-class analysis, we merged the “Diseased” class
and the “Exposed” class. We had a total of 18 samples
from each class. The settings of the Lonestar chemical
detector were changed for the methanol data: The num-
ber of lines in the fingerprint was reduced from 51 to
15. Unlike before, we used a particular choice for our
training and test data sets.

KNN: The results of the KNN analysis of the
methanol data can be found in Table 11. The algorithm
performed very well in a 3-class setting, achieving a test
error of 25.0% on the provided test data. Setting the
weights of the K neighbours proportional to the inverse
of the distance to the test points lead to very low errors
when reclassifying the training data (2.4%).

In a 2-class setting, the algorithm achieves a perfect
prediction on the test data, finding the correct class of
each test example. Using inverse weights also leads to a
very low resubstitution error.
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Table 9: KNN IBD urine results

Table 10: Random Forest IBD urine results

Table 11: KNN Methanol in Complex Backround results

Table 12: Random Forest Methanol in Complex Backround results
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Random Forests: The results of the Random
Forests analysis can be found in Table 12. In our tests,
the random forests algorithm showed a strong perfor-
mance. It managed to correctly classify 75.0% of the
test data in the 3-class setting, with a resubstitution er-
ror of 4.8%. In a 2-class setting, it correctly predicted
83.7% of the test examples. We achieved the best per-
formance with 50 random trees in our forests.

5. Future Work

The Random Forest experiments generally had very
low resubstitution error while the test error was higher
than expected. There is a large amount of overfitting
and we suggest to address this issue by using a pruning
algorithm or regularization.

We kept many of the hyperparameters of the random
forest algorithm constant. Optimization of all the hy-
perparameters can lead to substantial performance im-
provements. In most tests, we only utilized 80% of
the available data to train a classification model. Given
more time, we would try a leave-one-out analysis and
cross-validation. More training data in general should
give better results.

The KNN algorithm gave promising results, given
that the underlying method is so simple. Furthermore,
the algorithm is computationally inexpensive. There-
fore, an AdaBoost model with KNN classifiers as weak
learners may be a promising future approach.

Due to time restrictions, we were not able to test and
apply a number of the classification methods described
in Section 2. In particular, Neural Networks is a very
powerful method for classification of complex patterns.

In the peak analysis, we treated each peak as an inde-
pendent sample. In order to classify a new sample, one
would have to look at the distribution of class predic-
tions of all the peaks in the sample. We ran some rough
preliminary tests and noticed that the distribution was
highly skewed towards predicting cancer. This may be
due to the greater presence of cancer samples in the data
set. It may be worth to investigate this further.

We also did not attempt to extract the peaks from the
IBD and methanol data sets. While we have no particu-
lar reason to believe so, it may be possible to find good
separation of the classes in the peaks domain. The heat
maps from the IBD data showed that the negative ion
matrix may be more informative for classification pur-
poses than the positive one. It would be interesting to
run tests with the negative ion matrix for the methanol
data.

In previous experiments, wavelets were used to pre-
process data before classification [2]. This led to some

good results and combined with an algorithm such as
the random forest, may improve the method’s accuracy.

Another promising approach may be to treat the Lon-
estar fingerprints as images and use an edge detection
algorithm. We would scan each sample to detect edges
in the fingerprint. Next we would plot a histogram of the
orientation of the edges. Finally, we would attempt clas-
sification of the samples using the histograms as feature
vectors that might lead to discriminative areas.

6. Conclusion

In this paper, we provided an overview of ten differ-
ent classification algorithms along with their potential
advantages and disadvantages. We described the intu-
ition behind their theory and illustrated how they can
be used for different data sets. Next we selected five
of these methods and performed tests on a number of
artificially generated data and also one real-world data
set. Our aim was to investigate how these algorithms
perform in practice.

From these five algorithms, we chose two (K Nearest
Neighbours and Random Forests) that performed best
on the simple data sets and used them to analyse vari-
ous data sets from Field Asymmetric Ion Mobility Spec-
trometry. In particular, we investigated 2 different stud-
ies (Colorectal Cancer, Inflammatory Bowel Disease).
Our aim was to find a reliable way to separate the classes
of patients within a study using FAIMS. We attempted
to separate all three classes as well as just patients from
volunteers. Using K Nearest Neighbours and Random
Forests, we achieved high prediction accuracy in a num-
ber of cases.

We attempted to find regions that provide key indi-
cators between the classes on the chemical fingerprint
produced by FAIMS. We did this by creating heat maps
using a measure for feature importance from the Ran-
dom Forests model.

In addition, we studied samples taken from methanol
in oil that were produced under laboratory conditions.
These samples contained less contamination and noise
and were able to give us some further indication on the
performance of the classification methods. We achieved
perfect predictions using K Nearest Neighbours in some
cases. Random forests gave also very promising results.

However, we repeatedly encountered a large differ-
ence between resubstitution errors and test errors with
this algorithm. This indicates that further optimization
of the random forests parameters may lead to substantial
performance improvements.
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