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Abstract: Background: Volatile organic compound (VOC) profiles as biomarkers for hepatocellular
carcinoma (HCC) are understudied. We aimed to identify VOCs from the exhaled breath for HCC
diagnosis and compare the performance of VOCs to alpha-fetoprotein (AFP). The performance of VOCs
for predicting treatment response and the association between VOCs level and survival of HCC patients
were also determined. Methods: VOCs from 124 HCC patients and 219 controls were identified using
the XGBoost algorithm. ROC analysis was used to determine VOCs performance in differentiating
HCC patients from controls and in discriminating treatment responders from non-responders. The
association between VOCs and the survival of HCC patients was analyzed using Cox proportional
hazard analysis. Results: The combination of 9 VOCs yielded 70.0% sensitivity, 88.6% specificity, and
75.0% accuracy for HCC diagnosis. When differentiating early HCC from cirrhotic patients, acetone
dimer had a significantly higher AUC than AFP, i.e., 0.775 vs. 0.714, respectively, p = 0.001. Acetone
dimer classified HCC patients into treatment responders and non-responders, with 95.7% sensitivity,
73.3% specificity, and 86.8% accuracy. Isopropyl alcohol was independently associated with the survival
of HCC patients, with an adjusted hazard ratio of 7.23 (95%CI: 1.36–38.54), p = 0.020. Conclusions:
Analysis of VOCs is a feasible noninvasive test for diagnosing and monitoring HCC treatment response.

Keywords: volatile organic compounds (VOCs); biomarkers; cancer diagnosis; breath samples;
machine learning; Field Asymmetric Ion Mobility Spectrometry (FAIMS)

1. Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality
worldwide [1]. Currently available treatments against HCC yield unsatisfactory outcomes
due to the high recurrence rate and heterogenous nature of HCC [2]. Alpha-fetoprotein
(AFP) is the most widely used biomarker for HCC. However, AFP at a cutoff of 20 ng/mL
provided 52% sensitivity for detecting HCC at any stage and 44% sensitivity for detecting
early-stage HCC [3]. AFP had poor sensitivity for monitoring treatment response, as
approximately 60% of HCC patients did not have significant changes in AFP levels after
treatment [4]. Abdominal ultrasonography is recommended as a screening tool for HCC
in at-risk individuals. However, the sensitivity of ultrasonography for the detection of
early-stage HCC is limited [5,6]. Although Computerized Tomography (CT) and Magnetic
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Resonance Imaging (MRI) are the primary radiologic method for diagnosing and evaluating
responses to HCC therapy, these modalities are expensive and may have adverse effects [7].
Thus, novel approaches for early detection, diagnosis, and monitoring of therapeutic
responses are crucial.

Analysis of volatile organic compounds (VOCs) has increasingly been investigated for
their potential as diagnostic biomarkers for a number of cancers, e.g., liver, lung, thyroid,
breast, gastrointestinal, gynecological, and urological cancers [8–10]. VOCs are compounds
produced from tumor cell metabolic activity or the body’s immune response [11]. VOCs
profile represents several biological pathways related to cancer development and prolifera-
tion, such as inflammatory pathway, oxidative stress pathway, and apoptosis, and reflects
abnormal intracellular metabolism related to cancer cell activities, such as altered glucose
metabolism and redox dysregulation [12]. One tumor can express a variety of VOCs, which
are released into the blood circulation and can be detected in several bodily fluids such as
blood, exhaled breath, urine, and feces [11].

The combination of VOCs may address the disadvantages of conventional biomark-
ers [6,10,13]. Due to tumor heterogeneity, the combination of VOCs could potentially serve
as more accurate diagnostic biomarkers than a conventional single biomarker [13]. VOCs
can also be used as markers for monitoring treatment responses, for example, in lung
cancer patients, with an accuracy of 85% [14]. These signified the role of VOCs as tumor
biomarkers for diagnosis and treatment monitoring. Some VOCs can be considered as
generic cancer biomarkers due to their associations with several cancers [11]. For example,
acetone and hexanal were found in at least eight cancers [11]. These findings suggested that
different cancers may express the same VOCs, contributing to the low biomarker specificity.
Therefore, research focusing on identifying VOC profiles specific to each cancer is needed.

Previous studies have shown that VOCs can be used as biomarkers for tumors with
high mutational heterogeneity, such as HCC [15–19]. The feasibility of using exhaled VOC
for detecting HCC was demonstrated in a study of scent detection by a dog reporting a
sensitivity of 78% to differentiate HCC patients from healthy individuals [15]. A study
enrolling 22 cirrhotic patients reported that patients with HCC had a higher level of acetone
but lower levels of isoprene and pentane in exhaled breath than those without HCC [16].
Another research reported that levels of three VOCs, i.e., 3-hydroxy-2-butanone, styrene,
and decane, from exhaled breath of HCC patients were significantly higher than the breath
of healthy volunteers [17]. A very recent study showed that a combination of 18 exhaled
VOCs had an overall accuracy of 72% in differentiating HCC patients from non-HCC
subjects [18]. Although these studies demonstrated the potential of VOCs as biomarkers for
HCC diagnosis, the performance of VOCs compared to AFP has yet to be investigated, and
whether VOCs can be used to monitor treatment response and determine the prognosis of
HCC patients remains unknown.

Several techniques can be applied to profiling VOCs. Gas chromatography-mass spec-
trometry (GC-MS) and selective ion flow tube mass spectrometry (SIFT-MS) are commonly
used due to their high resolution and sensitivity. However, they are costly, time-consuming,
and require expertise for operation. An electronic nose (E-nose) sensor, a small-size portable
analyzer, is more user-friendly and yields rapid results at a lower cost. It is therefore pro-
posed to be used as a point-of-care testing analyzer [20]. Nonetheless, this type of sensor
is sensitive to water vapor and has a relatively short lifespan. Another technique is Field
Asymmetric Ion Mobility Spectrometry (FAIMS), which provides comparable sensitivity to
GC-MS and SIFT-MS but is less expensive and less sophisticated, thus, more suitable for
VOC analysis for clinical use [21].

Artificial intelligence (AI) has been increasingly developed and utilized in healthcare
to assist medical personnel, such as computational pathology and chest x-ray screening [22].
Regarding VOC analysis, AI was applied to select the ideal combination of VOCs for
diagnosing cancerous and non-cancerous diseases, e.g., tuberculosis, lung cancer, and
HCC [19,23–25]. Given the complexity and heterogeneity of tumor biology, the prediction
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model constructed using AI rather than conventional analyses is more capable of identifying
the VOC pattern that differentiates cancer patients from individuals without cancer [26].

In this study, we aimed to (1) identify the potential VOCs as biomarkers for HCC
diagnosis using the AI algorithm, (2) investigate the diagnostic performance of VOCs
in comparison to AFP, (3) assess the feasibility of utilizing VOCs for HCC treatment
monitoring, and (4) determine an association between the survival of HCC patients and
VOCs profile to explore the potential role of VOCs as prognostic biomarkers.

2. Materials and Methods
2.1. Participants

VOCs as biomarkers for HCC diagnosis. We recruited 124 HCC patients, 124 cirrho-
sis patients, and 95 healthy volunteers from the Center of Excellence for Innovation and
Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of
Medicine, Chulalongkorn University. For HCC patients, the inclusion criteria were patients
newly diagnosed with HCC by histopathologic confirmation or typical radiologic charac-
teristics according to the American Association for the Study of Liver Diseases criteria [27]
and who had not received any oncologic treatment. HCC stage was classified according to
the Barcelona-Clinic Liver Cancer (BCLC) staging system [28]. This study classified HCC
stages as early HCC (BCLC stages 0 and A) and advanced HCC (BCLC stages B and C). The
exclusion criteria were patients with recurrent HCC or a history of other cancers. Cirrhosis
was diagnosed by histopathology and/or radiologic features of small-sized nodular surface
liver and evidence of portal hypertension, e.g., intraabdominal collateral circulation and/or
splenomegaly. The severity of cirrhosis was classified by Child-Turcotte-Pugh (CTP) class.
Healthy volunteers were participants who had normal liver function tests and did not have
a history of chronic liver diseases and malignancies. The pre-treatment breath samples
were collected from all HCC patients prior to any oncogenic treatment.

VOCs as biomarkers for monitoring treatment response. A subgroup of 38 patients
was randomly selected from a cohort of 124 HCC patients. This subgroup was treated
with either transarterial chemoembolization (TACE) or percutaneous local ablative therapy
(PLAT) with radiofrequency or microwave ablation. Patients were followed up at 1 month
post-treatment to track for the change in VOCs profile. On the follow-up day, CT or MRI
imaging was performed, and the post-treatment breath samples were collected. Treatment
response was determined according to the modified Response Evaluation Criteria in Solid
Tumors (mRECIST) criteria. Patients without remaining viable tumors were considered
as a treatment response group, whereas those with remaining viable tumors were a non-
response group.

2.2. Clinical Data Collection

Participants’ baseline characteristics including gender, age, smoking status, alcohol
intake, cirrhosis, and etiologies of chronic liver disease (chronic viral hepatitis B and C
infection, non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, or others) and
diabetes mellitus were obtained from electronic medical records. We also abstracted infor-
mation regarding HCC BCLC stages, liver function tests, and AFP levels. For assessment
of survival, HCC patients were followed up for their vital status until death or the end of
the study period (22 March 2022).

2.3. Breath Collection

Prior to breath sampling, all participants had been fasting, ceased smoking and exer-
cising, and stopped current medication for at least 6 h to lessen exogenous confounders
that could contaminate the breath. A total of 100 mL end-exhaled-air was collected directly
from participants’ noses via mask at a rate of 50 mL/min using the ReCIVA® breath sample
system (Owlstone Medical, Cambridge, UK). The ReCIVA® breath sample system was
connected to a computer, and real-time breath monitoring was displayed via ReCIVA®

software. This system provided a constant supply of pure oxygen to the patient’s mask.
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Finally, the exhaled breath samples were concentrated in 4 thermal desorption (TD) tubes
(Unity™, Markes International Ltd., Llantrisant, UK). The samples were further analyzed
by GC-FAIMS immediately after breath collection (Figure 1).
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Figure 1. Schematic diagram of breath sample collection and breath sample analysis.

2.4. VOCs Extraction and Measurement

VOCs were extracted from TD tubes with a constant flow of helium at 50 mL/min
using 2 conditions. In the first condition, the TD tube was dry purged for 1 min and
heated at 280 ◦C for 5 min. In the second condition, the cold trap (U-T12ME-2S, Markes
International Ltd., Llantrisant, UK) was temperature programmed from 10 ◦C to 290 ◦C.

Extracted VOCs were transferred to GC by capillary line heated at 130 ◦C. The GC
system (Thermo Scientific TRACE1310 GC, Waltham, MA, USA) used HP-PLOT U GC column
(30 m × 0.32 mm ID × 10 µm df) (Agilent Technologies, Santa Clara, CA, USA) and helium
as the carrier gas with a flow rate of 1.0 mL/min for VOCs separation. The GC column was
initially heated at 40 ◦C for 2 min and ramped to 130 ◦C with a rate of 10 ◦C/min.

Separated VOCs were sent to FAIMS via a drift tube with a length of 7.5 cm and a drift
voltage of 5 kV by a transfer line heated at 130 ◦C for VOC detection. The FAIMS system
(Owlstone Medical Lonestar VOC Analyzer FAIMS system, Cambridge, UK) was operated
at a temperature of 40 ◦C and an ambient pressure of 10 millibars. Purified air was used as
drift gas with a flow rate of 150 mL/min. The VOCs profile was shown as a chromatogram.
VOC identification was achieved by calibrating the retention time of standard solutions
with the chromatogram. System calibration was performed daily to ensure the accuracy of
all instruments.

2.5. Data Analysis

For baseline characteristics, continuous variables were reported as mean ± standard
deviation (SD) or median and range as appropriate and compared by one-way ANOVA
test. Categorical variables were reported as numbers (%) and compared by Pearson’s
Chi-square test.

VOC levels were expressed as median (range) arbitrary units (AU). The VOCs levels
were compared among HCC, cirrhosis, and healthy groups using one-way ANOVA and
between HCC and cirrhosis groups using the Mann–Whitney U test. Logistic regression
analysis was performed to evaluate the association between VOCs and HCC.

In this study, the XGBoost was used to identify important features of VOC profiles,
and the algorithm also selected the ideal combination of VOCs to yield optimal statistical
parameters. XGBoost algorithm is one of the AI algorithms. We opted to use the XGBoost
algorithm as it minimized false predictions by continually learning from the model pre-
viously constructed as a series and therefore maximized the efficiency of the prediction
model [29]. The algorithm rated the importance of each VOC feature by counting the
frequency that the VOC feature was able to differentiate among the three cohorts and
reported the rating as a feature importance score (F score). The participant cohort was split
into 2 datasets, i.e., 80% as a training set and 20% as a test set. The training set comprised
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101 HCC patients, 100 cirrhotic patients, and 75 healthy volunteers, while the test set
included 23 HCC patients, 24 cirrhotic patients, and 20 healthy volunteers. The model
generated from the training set was evaluated for its predictive performance using the
test set. The model performance was reported as sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy. Furthermore, XGBoost was
used to construct the model for differentiating early HCC and advanced HCC.

Receiver-operating characteristic (ROC) curve was generated to identify the optimal
cutoff of VOCs and AFP for HCC diagnosis. Area Under the ROC Curve (AUC) of AFP
levels at the cutoff identified by the ROC curve, the median AFP value, and the AFP of
20 ng/mL were estimated. The level of AFP that yielded the maximum AUC was selected
as the optimal cutoff for AFP. Concordance statistics (c-statistics) were used to compare the
diagnostic performance of VOCs and AFP.

A paired sample t-test and Mann–Whitney U test were performed to assess the change
in median levels of VOCs in HCC patients between the pre-and post-treatment groups
and between the treatment response and non-response groups, respectively. ROC analysis
was performed to determine the performance of VOCs as biomarkers for monitoring
treatment response.

The correlation between VOCs and the survival of HCC patients was evaluated using
Cox proportional hazard analysis. Age, gender, and other factors related to patient survival
were also analyzed by univariate and multivariate Cox proportional hazard model.

Statistical analyses were performed using the SPSS package version 22.0.0 (SPSS Inc.,
Chicago, IL, USA). A p-value of < 0.05 was considered statically significant.

3. Results
3.1. Baseline Characteristics

The baseline characteristics of the study cohort are shown in Table 1. The number
of HCC patients with BCLC stages 0, A, B, and C were 25 (20.2%), 42 (33.9%), 37 (29.8%),
and 20 (16.1%), respectively. Age, gender, smoking status, and alcohol consumption
were not statistically different among the HCC, cirrhosis, and healthy groups. There was
no significant difference in etiologies of chronic liver disease between HCC and cirrhosis
groups. The proportion of patients with CTP class A, B, and C cirrhosis differed significantly
between the HCC (78.2%, 21.0%, and 0.8%) and cirrhosis (93.5%, 6.5%, and 0.0%) groups,
p = 0.002. The HCC group had significantly higher levels of total bilirubin, aspartate
aminotransferase, alanine aminotransferase, alkaline phosphatase, and AFP but a lower
level of albumin than the cirrhosis and healthy groups.

Table 1. Baseline characteristics of the study cohort.

Variables HCC
(n = 124)

Cirrhosis
(n = 124) p † Healthy

(n = 95) p ‡

Age, years * 62.7 ± 12.6 60.6 ± 9.2 0.126 59.3 ± 9.1 0.053

Male, n (%) 60 (48.4%) 62 (50.0%) 0.799 47 (49.5%) 0.967

Smoking, n (%) 58 (46.8%) 48 (38.7%) 0.199 35 (36.8%) 0.265

Alcohol consumption, n (%) 23 (18.5%) 27 (21.8%) 0.527 22 (23.2%) 0.684

Cirrhosis, n (%) 122 (98.4%) 124 (100.0%) 0.156 0 (0.00%) 0.016

Child-Pugh class, n (%) 0.002

A 97 (78.2%) 115 (93.5%) 0 (0.0%)

B 26 (21.0%) 8 (6.5%) 0 (0.0%)

C 1 (0.8%) 0 (0.0%) 0 (0.0%)

Chronic HBV infection, n (%) 53 (42.7%) 42 (33.9%) 0.151 0 (0.0%)

Chronic HCV infection, n (%) 34 (27.4%) 48 (38.7%) 0.059 0 (0.0%)
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Table 1. Cont.

Variables HCC
(n = 124)

Cirrhosis
(n = 124) p † Healthy

(n = 95) p ‡

NAFLD, n (%) 37 (29.8%) 32 (25.8%) 0.479 0 (0.0%)

Diabetes mellitus, n (%) 45 (36.3%) 41 (33.1%) 0.594 0 (0.0%)

Albumin (g/dL) * 3.8 ± 0.6 4.0 ± 0.4 0.001 4.4 ± 0.2 <0.001

Total bilirubin (mg/dL) * 1.6 ± 2.2 1.1 ± 0.9 0.018 0.8 ± 0.3 0.021

AST (U/L) * 74 ± 84 38 ± 36 <0.001 23 ± 6 <0.001

ALT (U/L) * 53 ±78 33 ± 43 0.014 24 ± 12 0.016

Alkaline phosphatase (U/L) * 164 ± 225 94 ± 48 0.001 69 ± 21 0.001

AFP (ng/mL), median (range) 9.9 (1.1–158,906.2) 2.4 (1.0–18.1) 0.008 3.1 (1.3–10.6) <0.001

* Data are shown as mean ± standard deviation. p † for HCC vs. Cirrhosis, p ‡ for HCC vs. Cir-
rhosis vs. Healthy. Abbreviations: AFP—alpha fetoprotein, ALT—alanine aminotransferase, AST—
aspartate aminotransferase, HBV—hepatitis B virus, HCV—hepatitis C virus, NAFLD—non-alcoholic fatty
liver disease.

3.2. VOCs as Biomarkers for HCC Diagnosis

The XGBoost algorithm identified nine VOCs as important features for differentiat-
ing among HCC, cirrhosis, and healthy groups (Figure 2A). There were four VOCs that
had noticeably high F scores, i.e., acetone monomer (332 scores), followed by ethanol
(286 scores), acetone dimer (280 scores), and acetonitrile (268 scores).

Figure 2B shows the results of the predictive model generated by the XGBoost algo-
rithm in classifying HCC, cirrhosis, and healthy controls. The model’s overall accuracy in
correctly classifying the participants into three groups was 75.0%, with 70.0% sensitivity,
88.6% specificity, 76.2% PPV, 84.8% NPV, and 82.1% accuracy in differentiating HCC from
cirrhosis and healthy groups. When differentiating cirrhosis from the other two groups, the
sensitivity, specificity, PPV, NPV, and accuracy were 79.2%, 81.4%, 70.4%, 87.5%, and 80.6%,
respectively. Lastly, healthy controls were correctly identified with a sensitivity of 75.0%,
specificity of 91.5%, PPV of 78.9%, NPV of 89.6%, and accuracy of 86.5%.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

Table 1. Baseline characteristics of the study cohort. 

Variables HCC 
(n = 124) 

Cirrhosis 
(n = 124) 

p †  Healthy 
(n = 95) 

p ‡  

Age, years * 62.7 ± 12.6 60.6 ± 9.2 0.126 59.3 ± 9.1 0.053 
Male, n (%) 60 (48.4%) 62 (50.0%) 0.799 47 (49.5%) 0.967 
Smoking, n (%) 58 (46.8%) 48 (38.7%) 0.199 35 (36.8%) 0.265 
Alcohol consumption, n (%) 23 (18.5%) 27 (21.8%) 0.527 22 (23.2%) 0.684 
Cirrhosis, n (%) 122 (98.4%) 124 (100.0%) 0.156 0 (0.00%) 0.016 
Child-Pugh class, n (%)   0.002   

   A 97 (78.2%) 115 (93.5%)  0 (0.0%)  

   B 26 (21.0%) 8 (6.5%)  0 (0.0%)  

   C 1 (0.8%) 0 (0.0%)  0 (0.0%)  

Chronic HBV infection, n (%) 53 (42.7%) 42 (33.9%) 0.151 0 (0.0%)  
Chronic HCV infection, n (%) 34 (27.4%) 48 (38.7%) 0.059 0 (0.0%)  
NAFLD, n (%) 37 (29.8%) 32 (25.8%) 0.479 0 (0.0%)  
Diabetes mellitus, n (%) 45 (36.3%) 41 (33.1%) 0.594 0 (0.0%)  
Albumin (g/dL) * 3.8 ± 0.6 4.0 ± 0.4 0.001 4.4 ± 0.2 <0.001 
Total bilirubin (mg/dL) * 1.6 ± 2.2 1.1 ± 0.9 0.018 0.8 ± 0.3 0.021 
AST (U/L) * 74 ± 84 38 ± 36 <0.001 23 ± 6 <0.001 
ALT (U/L) * 53 ±78 33 ± 43 0.014 24 ± 12 0.016 
Alkaline phosphatase (U/L) * 164 ± 225 94 ± 48 0.001 69 ± 21 0.001 
AFP (ng/mL), median (range) 9.9 (1.1–158,906.2) 2.4 (1.0–18.1) 0.008 3.1 (1.3–10.6) <0.001 

* Data are shown as mean ± standard deviation. p † for HCC vs. Cirrhosis, p ‡ for HCC vs. Cirrhosis 
vs. Healthy. Abbreviations: AFP—alpha fetoprotein, ALT—alanine aminotransferase, AST—aspar-
tate aminotransferase, HBV—hepatitis B virus, HCV—hepatitis C virus, NAFLD—non-alcoholic 
fatty liver disease. 

3.2. VOCs as Biomarkers for HCC Diagnosis 
The XGBoost algorithm identified nine VOCs as important features for differentiat-

ing among HCC, cirrhosis, and healthy groups (Figure 2A). There were four VOCs that 
had noticeably high F scores, i.e., acetone monomer (332 scores), followed by ethanol (286 
scores), acetone dimer (280 scores), and acetonitrile (268 scores). 

 
Figure 2. Cont.



Diagnostics 2023, 13, 257 7 of 14Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 

 

 
Figure 2. (A) A feature importance score (F score) of VOCs used to discriminate among HCC,
cirrhosis, and healthy controls, (B) The confusion matrix from XGBoost to classify participants as
HCC, cirrhosis, and healthy controls, (C) F score of VOCs to discriminate between the early (BCLC
stages 0-A) and advanced (BCLC stages B-C) HCC stages, (D) The confusion matrix from XGBoost to
differentiate between early HCC and advanced HCC.
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Table 2 shows the levels of nine VOCs identified by the XGBoost algorithm. There were
significant differences in the levels of acetone monomer (p < 0.001), 1,4-petadiene (p = 0.015),
isopropyl alcohol (p = 0.022), acetone dimer (p < 0.001), and toluene (p < 0.001) among the HCC,
cirrhosis, and healthy groups. In HCC patients, the acetone monomer level was lower, while
the levels of acetone dimer and isopropyl alcohol were higher than in cirrhosis and healthy
groups. The HCC group had higher levels of 1,4-pentadiene and toluene than the healthy
group but lower levels of these two VOCs than the cirrhosis group. When compared between
HCC and cirrhosis groups, the HCC group significantly had higher levels of isopropyl alcohol
and acetone dimer than the cirrhosis group, with median (range) levels of 0.18 (0.07–1.73) vs.
0.15 (0.08–1.22) AU, and 5.08 (2.84–5.83) vs. 4.48 (2.59–4.93) AU for isopropyl alcohol and
acetone dimer, respectively, p = 0.032 and p < 0.001.

Table 2. VOC levels in HCC, cirrhosis, and healthy groups *.

VOCs HCC (n = 124) Cirrhosis (n = 124) p † Healthy (n = 95) p ‡

Ethanol 0.25 (0.12–1.01) 0.25 (0.12–0.44) 0.728 0.26 (0.12–0.42) 0.341

Acetone monomer 3.85 (2.20–4.76) 3.90 (2.28–4.82) 0.559 4.29 (2.07–4.70) <0.001

Dimethyl sulfide 0.29 (0.04–3.67) 0.41 (0.08–1.81) 0.939 0.28 (0.10–1.24) 0.845

1,4-pentadiene 0.74 (0.00–2.12) 0.82 (0.01–3.35) 0.389 0.65 (0.10–1.54) 0.015

Benzene 0.21 (0.00–0.74) 0.21 (0.01–1.11) 0.199 0.18 (0.10–0.79) 0.139

Isopropyl alcohol 0.18 (0.07–1.73) 0.15 (0.08–1.22) 0.032 0.15 (0.08–1.20) 0.022

Acetone dimer 5.08 (2.84–5.83) 4.48 (2.59–4.93) <0.001 3.90 (1.32–5.03) <0.001

Acetonitrile 0.16 (0.07–0.69) 0.15 (0.09–0.70) 0.426 0.17 (0.05–0.74) 0.073

Toluene 0.41 (0.14–2.33) 0.43 (0.09–2.75) 0.782 0.31 (0.06–2.87) <0.001

* Data are shown as median (range) in arbitrary units. p † for HCC vs. Cirrhosis, p ‡ for HCC vs. Cirrhosis
vs. Healthy.

Regarding the differentiation between the stages of HCC, five VOCs (ethanol, acetone
dimer, benzene, 1,4-pentadiene, and isopropyl alcohol) were identified as important fea-
tures for classifying patients with early and advanced HCC (Figure 2C). The model correctly
predicted 11 of 14 early HCC patients and 8 of 9 advanced HCC patients, accounting for
78.6% sensitivity, 88.9% specificity, 72.7% PPV, 91.7% NPV, and 82.6% accuracy (Figure 2D).

3.3. Performance of Acetone and AFP as Diagnostic Biomarkers

Acetone dimer was the VOC that significantly differed when comparing HCC to the
cirrhosis group (p < 0.001) and between the three groups (p < 0.001). We performed logistic
regression analysis to determine whether acetone dimer was independently associated
with HCC among cirrhotic patients. By multivariate analysis adjusted for age, gender,
and CTP class, we found that acetone dimer and AFP were significantly associated with
HCC, with adjusted odd ratios (OR) of 9.29 (95%CI: 2.34–36.79) and 1.42 (95%CI: 1.06–1.88),
respectively, p < 0.001 and 0.006. Thus, acetone dimer was selected as a candidate VOCs for
the diagnosis of HCC. For the diagnostic performance of acetone dimer at a cutoff level
of 4.6579 AU, the ROC curve differentiated between HCC patients and non-HCC patients
(combined cirrhosis and healthy patients), with an AUC of 0.816 and 83.9% sensitivity,
79.4% specificity, 70.0% PPV, 89.6% NPV, and 81.0% accuracy (Table 3). At the same cutoff
level, HCC patients were differentiated from cirrhotic patients, with an AUC of 0.769 and
83.9% sensitivity, 69.9% specificity, 73.8% PPV, 81.1% NPV, and 76.9% accuracy. When
distinguished between the early HCC and cirrhosis groups, the AUC was 0.775, with 85.1%
sensitivity, 69.9% specificity, 60.6% PPV, 89.6% NPV, and 75.2% accuracy.

Regarding the AFP as the biomarker for HCC diagnosis, the AFP level of 20 ng/mL
provided the greatest performance among the three pre-specified cutoffs (data not shown).
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AFP at a cutoff of 20 ng/mL differentiated between HCC and non-HCC groups, with AUC
of 0.802 and 62.4% sensitivity, 100% specificity, 100% PPV, 62.4% NPV, and 69.9% accuracy
(Table 3). The HCC group was differentiated from the cirrhosis group, with an AUC of
0.806 and 40.2% sensitivity, 100% specificity, 100% PPV, 58.8% NPV, and 67.7% accuracy.

Table 3. Performance of acetone dimer and alpha fetoprotein for diagnosis of HCC.

Biomarker Group * Cutoff AUC Sensitivity Specificity PPV NPV Accuracy

Acetone dimer

HCC vs. non-HCC 4.6579 0.816 83.9% 79.4% 70.0% 89.6% 81.0%

Early HCC vs. non-HCC 4.6579 0.822 85.1% 79.4% 55.9% 94.5%, 80.7%

HCC vs. cirrhosis 4.6579 0.769 83.9% 69.9% 73.8% 81.1% 76.9%

Early HCC vs. cirrhosis 4.6579 0.775 85.1% 69.9% 60.6% 89.6% 75.2%

AFP

HCC vs. non-HCC 20 0.802 62.4% 100.0% 100.0% 62.4% 69.9%

Early HCC vs. non-HCC 20 0.721 19.0% 100.0% 100.0% 69.5%, 68.7%

HCC vs. cirrhosis 20 0.806 40.2% 100.0% 100.0% 58.8% 67.7%

Early HCC vs. cirrhosis 20 0.714 19.0% 100.0% 100.0% 66.2% 12.6%

* Number of participants in each group is as follows: 124 HCC, 67 Early HCC, 210 non-HCC, and 124 cirrho-
sis. Abbreviations: AFP—alpha fetoprotein, HCC—hepatocellular carcinoma, AUC—area under the curve,
PPV—positive predictive value, and NPV—negative predictive value.

For the comparison between the performance of acetone dimer and AFP as a biomarker
for HCC diagnosis, acetone dimer significantly had higher AUCs than AFP for diagnosis of
HCC at any stage and HCC at an early stage, i.e., 0.816 vs. 0.802 and 0.775 vs. 0.714, respec-
tively, p = 0.002 and 0.001, indicating that acetone dimer had a better overall performance
than AFP for HCC diagnosis.

3.4. VOCs as Biomarkers for Monitoring Treatment Response

Of the 38 HCC patients of whom pre- and post-treatment exhaled VOCs were profiled,
22 patients were treated with TACE, and 16 patients underwent PLAT with radiofrequency
or microwave ablation. After the treatment, there were significant reductions in the median
(range) levels of 4 VOCs as follows: dimethyl sulfide from 0.67 (0.17–1.39) to 0.48 (0.15–1.38)
AU, p = 0.007, benzene from 0.15 (0.06–0.72) to 0.11 (0.03–0.45) AU, p = 0.013, acetone dimer
from 5.10 (2.98–5.83) to 4.35 (2.70–5.33) AU, p < 0.001, and acetonitrile from 0.15 (0.10–3.67)
to 0.10 (0.06–0.40) AU, p = 0.006 (Supplemental Table S1). At follow-up, 23 (60.5%) patients
(12 TACE, 11 PLAT) responded to treatment, while the other 15 (39.5%) patients (10 TACE, 5
PLAT) did not respond. The magnitudes of dimethyl sulfide and acetone dimer reductions
in the treatment response group were significantly greater than in the non-response group.
(Supplemental Table S2). The reduction magnitude in the response group and non-response
group was −0.15 (−0.71, 0.32) vs. 0.05 (−0.28, 0.32) AU for dimethyl sulfide, and −1.32 (−2.75,
−0.06) vs. −0.12 (−2.63, 1.80) AU for acetone dimer, respectively, p = 0.031 and 0.003.

The performance of acetone dimer in differentiating HCC patients who responded to
treatment from the non-responders was determined. At the cutoff of 0.2591 AU, acetone
dimer provided an AUC of 0.780, with 95.7% sensitivity, 73.3% specificity, 84.6% PPV, 91.7%
NPV, and 86.8% accuracy.

3.5. Association between VOCs and Survival of HCC Patients

The median follow-up time for HCC patients was 7 months. There were 90.3%
(n = 112/124) of HCC patients who survived until the end of the study. We found that
advanced HCC stage, high levels of AFP, and isopropyl alcohol were significantly associ-
ated with worse survival, with a hazard ratio (HR) of 7.07 (95%CI: 1.55–32.31), 1.53 (95%CI:
1.09–2.17) and 4.84 (95%CI: 1.28–18.24), respectively, p = 0.012, 0.015 and 0.020 (Table 4). By
multivariate analysis, isopropyl alcohol remained independently associated with worse sur-
vival, with an adjusted HR of 7.23 (95%CI: 1.36–38.54), p = 0.020; and advanced HCC stage
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was borderline significantly associated with the decreased survival, with an adjusted HR of
5.66 (95%CI: 0.90–35.59), p = 0.065 (Table 4).

Table 4. Factors associated with survival of HCC patients.

Variables
Univariate Analysis p Multivariate Analysis p

HR (95%CI) Adjusted HR (95%CI)

Age 1.00 (0.95–1.05) 0.956 1.03 (0.97–1.09) 0.408

Sex 1.51 (0.48–4.76) 0.483 1.05 (0.21–5.15) 0.957

AFP 1.53 (1.09–2.17) 0.015 1.39 (0.72–2.66) 0.325

HCC stage

Early (BCLC 0-A) reference

Advanced (BCLC B-C) 7.07 (1.55–32.31) 0.012 5.66 (0.90–35.59) 0.065

Acetone monomer 0.54 (0.22–1.31) 0.170

Dimethyl sulfide 0.79 (0.17–3.57) 0.759

Benzene 0.64 (0.01–37.49) 0.827

Isopropyl alcohol 4.84 (1.28–18.24) 0.020 7.23 (1.36–38.54) 0.020

Acetone dimer 1.50 (0.43–5.26) 0.524

Toluene 0.64 (0.08–5.18) 0.674

Abbreviations: AFP—alpha fetoprotein, BCLC stage—Barcelona clinic liver cancer stage, HR—Hazard ratio,
95%CI—95% confidence interval.

4. Discussion

In this study, we used the XGBoost algorithm to identify the unique features of
the exhaled VOCs and generate the predictive model for HCC diagnosis. The model
classified patients into the correct groups with satisfactory performance, with an overall
accuracy of 75%.

The performance of exhaled VOCs for HCC diagnosis observed in this study
(70.0% sensitivity, 88.6% specificity) was consistent with those shown in previous studies,
with reported sensitivities ranging from 73.0% to 86.7% and specificities ranging from
71.0% to 91.7% [15,17–19]. Likewise, the performance of VOCs in differentiating early HCC
from advanced HCC (78.6% sensitivity, 88.9% specificity) was comparable to the previously
reported sensitivity of 76.5% and specificity of 82.7% [19]. These findings support the utility
of VOC analysis for HCC diagnosis. The VOCs profile could possibly assist physicians in
determining the HCC stages and executing an appropriate treatment plan, as the standard
treatment modality differed between early and advanced HCC.

Among the five VOCs that distinguished HCC patients from those without HCC, the
levels of the two VOCs, acetone dimer and isopropyl alcohol, were significantly greater in
HCC patients than in non-HCC patients. These observations were in line with previous
studies [18,19] A study including 112 HCC patients, 30 cirrhotic patients, and 54 participants
without chronic liver diseases reported that the level of acetone in the exhaled breath was
found to be significantly higher in HCC patients and cirrhotic patients than participants
without chronic liver diseases. Moreover, a combination of 18 exhaled VOCs, which
included acetone and isopropyl alcohol, provided 73% sensitivity and 71% specificity for
discriminating HCC patients from non-HCC individuals without cirrhosis [18]. A very
recent study of 97 HCC patients and 111 non-HCC patients reported that HCC patients had
a significantly higher level of acetone than non-HCC patients. When acetone was combined
with another five exhaled VOCs, the combination of VOCs showed 76.5% sensitivity and
82.7% specificity for HCC diagnosis. Similar to the previous study, this study reported
a significant reduction in acetone levels after HCC therapy, with a greater reduction in
patients who responded to therapy when compared to those who did not respond to the
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treatment [19]. Taken together, these findings highlight the potential role of acetone as a
biomarker for HCC diagnosis and monitoring treatment response.

Acetone is a ketone compound derived from the spontaneous degradation of acetoac-
etate, a ketone body generated from acetyl-CoA, mainly obtained from the beta-oxidation
of long-chain fatty acids [30]. Another source of acetone is the alcohol dehydrogenase
enzyme, which reversibly converts isopropyl alcohol to acetone via an oxidation-reduction
reaction [31]. This interaction implies that acetone is directly correlated to isopropyl alcohol
and these two VOCs usually co-exist [11,31,32]. These two VOCs are associated with
cellular metabolic dysregulation. The reprogramming of energy metabolism is one of the
pathogeneses of HCC [33]. Cancer cells abnormally metabolize glucose and deplete the
availability of glucose for the surrounding cells, hence shifting the energy source toward
the lipid metabolism pathway [34]. Acetone is one of the byproducts of the fatty acid
oxidation process, which is also upregulated to produce sufficient energy for cancer growth
and the anabolic process [35]. For these reasons, metabolic dysregulation was responsible
for the rise of these two VOCs in HCC patients.

Although accumulating evidence showed the potential of acetone as biomarkers
for HCC diagnosis, the usage of acetone and isopropyl alcohol in HCC was scarcely
investigated; this study further examined the clinical applications for these VOCs. Firstly,
we found that HCC patients significantly expressed a decreased level of acetone dimer
after receiving cancer therapy. Moreover, the patients who responded to treatments also
expressed a lower level of acetone dimer in comparison to those in the non-response
group. Acetone dimer provided high sensitivity, specificity, and accuracy for predicting
the treatment responsiveness in HCC patients. These findings implied that the changes in
acetone level had the potential role as biomarkers for monitoring treatment responses.

We found that acetone dimer showed a significantly greater AUC than AFP, indi-
cating better overall performance for HCC diagnosis. Given the limited performance of
AFP, exhaled VOCs may be useful as an additional tool to enhance the investigations of
HCC detection.

The present study found that an increased level of isopropyl alcohol was significantly
associated with a decline in survival for HCC patients. The results implicated that isopropyl
alcohol may be used as HCC prognostic biomarker. In clinical settings, prognostic biomark-
ers might be useful in guiding appropriate treatment plans and physicians’ decisions. Thus,
HCC patients with elevated isopropyl alcohol were considered at risk and should be closely
monitored for disease progression.

Unlike most studies of exhaled VOCs for diagnosis of HCC, to the best of our knowl-
edge, this is the first study demonstrating that the exhaled VOC yielded better overall
performance than AFP for diagnosis of HCC at any stage and HCC at an early stage.
The number of HCC patients and controls was relatively large compared to previous
studies. Another strength of this study was that we applied FAIMS with the XGBoost
algorithm for VOC profile analysis. In most previous studies, VOCs were identified using
GC-MS, the complicated technique that is difficult to apply for large-scale routine clinical
service [36,37]. Herein, our study demonstrated the feasibility of a new technique, GC-
FAIMS with ReCIVA® breath sample system, for VOC analysis in a point-of-care setting.
Accordingly, exhaled VOCs might be used as an adjunctive screening tool to overcome
the limitations of ultrasound machines, such as undetectable small tumors and being
operator-dependent [38]. Taken together, the detection of exhaled VOCs could offer a novel
approach that might lessen HCC diagnostic burdens in real clinical practice.

There are some limitations to our study. We did not compare the performance of
exhaled VOCs with ultrasound, the standard tool for HCC screening. Although our
participants had various risk factors representing common contributing factors associated
with HCC development, most of HCCs occurred in patients with underlying chronic viral
hepatitis B infection. Because HCCs occurring from different etiologies have different
genetic alterations and dysregulated pathways, it remains unknown whether the VOCs
identified in this study could be used as diagnostic biomarkers in another population of
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whom chronic viral hepatitis C infection and alcoholic cirrhosis are the main risk factors
for HCC. The predictive model in this study was derived from a single cohort, and the
model performance was evaluated in a cohort of participants from the same center. The
generalizability of this model has to be further investigated. External validation of these
findings in another independent cohort is required before applying this approach to clinical
practice. Exogenous confounding factors such as environmental factors, occupational
exposure, and underlying diseases could have possibly been involved in the production
of VOCs and altered the VOCs profiles. Therefore, we implemented the breath collection
protocol to minimize these confounding factors. Analysis of VOCs using the TD-GC-FAIMS
technique requires the creation of a VOC library. The machine is relatively large, thus,
impeding its use as a screening tool in field conditions. Optimizing the analysis by a
targeted approach and further developing a portable analyzer with sensors to detect some
selected VOCs would facilitate the utility of exhaled VOC analysis for cancer diagnosis in
clinical practice.

5. Conclusions

Exhaled VOCs provide promising performance as non-invasive biomarkers for HCC
diagnosis, staging, and monitoring of HCC treatment response. Acetone has a better overall
performance than the standard biomarker AFP for HCC diagnosis, and isopropyl alcohol
is a predictor of survival in HCC patients. Validating these findings in other cohorts of
individuals at-risk for HCC is warranted.
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