
RESEARCH ARTICLE

Machine learning analysis of volatolomic

profiles in breath can identify non-invasive

biomarkers of liver disease: A pilot study

Jonathan N. Thomas, Joanna Roopkumar, Tushar PatelID*

Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville,

Florida, United States of America

* patel.tushar@mayo.edu

Abstract

Disease-related effects on hepatic metabolism can alter the composition of chemicals in the

circulation and subsequently in breath. The presence of disease related alterations in

exhaled volatile organic compounds could therefore provide a basis for non-invasive bio-

markers of hepatic disease. This study examined the feasibility of using global volatolomic

profiles from breath analysis in combination with supervised machine learning to develop

signature pattern-based biomarkers for cirrhosis. Breath samples were analyzed using ther-

mal desorption-gas chromatography-field asymmetric ion mobility spectroscopy to generate

breathomic profiles. A standardized collection protocol and analysis pipeline was used to

collect samples from 35 persons with cirrhosis, 4 with non-cirrhotic portal hypertension, and

11 healthy participants. Molecular features of interest were identified to determine their abil-

ity to classify cirrhosis or portal hypertension. A molecular feature score was derived that

increased with the stage of cirrhosis and had an AUC of 0.78 for detection. Chromatographic

breath profiles were utilized to generate machine learning-based classifiers. Algorithmic

models could discriminate presence or stage of cirrhosis with a sensitivity of 88–92% and

specificity of 75%. These results demonstrate the feasibility of volatolomic profiling to clas-

sify clinical phenotypes using global breath output. These studies will pave the way for the

development of non-invasive biomarkers of liver disease based on volatolomic signatures

found in breath.

Introduction

The liver has a central role in metabolism, and disease related effects on hepatic functioning

can alter the nature and quantity of metabolites that are generated. Amongst these are volatile

organic compounds (VOC), high vapor pressure molecules that can diffuse through the circu-

lation and eventually be exhaled in the breath. While VOC only account for<1% of breath,

hundreds of high vapor pressure molecules associated with systemic metabolic functions can

be detected within each breath [1]. Thus, alterations in the VOC metabolomic (volatolomic)

output of the liver associated with disease pathophysiology can be detected in exhaled breath
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[2]. This phenomenon has been recognized for millennia, forming the basis of fetor hepaticus
and other breath-based manifestations of disease.

The application of VOC analysis to capture disease relevant information from exhaled

breath provides an untapped opportunity to develop non-invasive biomarkers for liver dis-

eases that may facilitate earlier diagnosis or guide patient management. Chronic liver disease

and cirrhosis may be present in the absence of symptoms but yet are a major cause of morbid-

ity and mortality [3, 4]. A timely diagnosis of cirrhosis may enable interventions to limit

inflammation or progression of fibrosis as well as the initiation of surveillance approaches for

early detection of hepatocellular cancer. Once cirrhosis is present, decompensation is clinically

defined by the onset of complications such as ascites, and portends a higher risk of morbidity,

hospitalizations, prolonged care and mortality [5]. Furthermore, the hepatic volatolomic out-

put could potentially be altered as a consequence of progressive portal hypertension and

hepatic dysfunction prior to the onset of clinical manifestations of decompensation.

Although prior studies have described and analyzed VOC in the breath of patients with

liver diseases, the feasibility of using breath VOC analysis for disease detection remains poorly

defined. Accurate identification of individual VOC is highly dependent on the detection tech-

nology used. This has varied across studies and has confounded efforts to identify or catalog

disease specific compounds. Consequently, there is a lack of consensus on the optimal use of

individual or groups of VOC to differentiate between different clinical states. This has ham-

pered the use of exhaled breath analysis for biomarker applications. Compared with the study

of single VOC, global or broad volatolomic analysis would incorporate changes that are

reflected within a wider range of low abundance disease associated VOC present in exhaled

breath [6–9]. We performed a proof of concept study to establish the utility of breath volatolo-

mic profiling to develop predictive models. A highly sensitive separation and detection

approach to generate volatolomic profiles from exhaled breath samples was developed by com-

bining thermal desorption (TD) with both gas chromatography (GC) and field asymmetric ion

mobility spectrometry (FAIMS). This enabled us to capture multi-dimensional volatolomic

data based on both chromatographic separation and ion-mobility spectrometry to separate

ions based on their drift in high electric fields. The data was then combined with supervised

machine learning to generate breath volatolomic based classifiers for the presence or stage of

cirrhosis, thereby demonstrating the feasibility of using this approach to develop non-invasive

biomarkers associated with liver diseases.

Methods

Ethical approval

The study was conducted under a Mayo Clinic Insitutional Review Board (IRB) approved pro-

tocol and conformed to the ethical guidelines of the Declaration of Helsinki. Informed consent

was obtained from each participant in writing. The trial was registered at clinical trials.gov

(NCT04341012).

Study design and participants

The study was a prospective, single-institution study. All study participants were enrolled

between September 2019 and March 2020. The study inclusion criteria were the ability to pro-

vide informed consent and age greater than 18 years. There were no exclusion criteria. Partici-

pants were categorized into groups based on absence or presence of cirrhosis and/or portal

hypertension, or their complications as determined on the basis of histologic, clinical, bio-

chemical or elastographic features. Participants with no cirrhosis or portal hypertension were

designated as Stage 0. Participants with cirrhosis or portal hypertension were designated as
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Stage 1, 2 or 3 based on the absence or presence of complications of portal hypertension (asci-

tes, variceal hemorrhage, hepatic encephalopathy) or liver insufficiency (jaundice). Stage 1 had

no varices or other clinically evident complications, Stage 2 had varices only but no other com-

plications, while Stage 3 had decompensated disease, manifest with ascites, variceal hemor-

rhage, or hepatic encephalopathy. The clinical diagnoses were made independently by two

hepatologists. All participants completed a questionnaire at the time of the breath collection

regarding their lifestyle, recent dietary choices, current symptoms and other clinical

information.

Breath sample collection

Breath samples were collected using the ReCIVA breath sampler (Owlstone Medical, Cam-

bridge, UK) and analyzed by TD-GC-FAIMS (Fig 1). Subjects were asked to fast for at least

four hours prior to the breath collection, avoiding solid food prior to the collection. A breath

sample was collected by a trained researcher using the breath sampler. Sample collection was

performed with the patient seated upright, resting for at least 10 minutes. An air supply unit

attached to the sampler pumps provided filtered, ambient air with reduced VOC at 40 L/min

for the patient to inhale. 1 L of exhaled breath from both the upper and lower airways was col-

lected, at a flow rate of 200 mL min-1, onto four preconditioned Bio-Monitoring TD tubes

(Markes International, South Wales, United Kingdom). The breath sampler uses pressure and

CO2 sensors to monitor the patient’s breathing rate to regulate the timing of its two pumps for

the four sorbent tube ports. This allowed for control over the total volume, flow rate, and the

specific phase of exhaled air collected.

Collection of environmental sample blanks

Room air sample and air supply collections were performed immediately after the breath sam-

ple collection using the ReCIVA breath sampler and TD tubes from the same conditioned

batch as the breath samples. For room air sample collection, the breath sampler was placed

sideways on a pre-cleaned metal surface, facing outwards, with the air supply on. The ReCIVA

Fig 1. Collection and analysis of breath samples. Volatile organic compounds (VOC) in exhaled breath are collected onto thermal desorption

tubes that pre-concentrate and focus analytes into a gas chromatography (GC) column for physical separation. Subsequently, VOC are further

distinguished by field asymmetric ion mobility spectrometry that applies an alternating electric dispersion field with maximum voltage of 45V,

55V or 65V. Data output matrices for both positive and negative ions detected are preprocessed and the maximum ion peak intensity identified

for each positive and negative ion resolved by GC retention time. Molecular features describe intensity resolved VOC defined by intensity

greater than a threshold level, whereas separation chromatograms capture all VOC in a time-resolved manner. Differences in VOC output

measured as molecular features or in separation chromatograms between controls (green lines) and disease states (red lines) are analyzed by

machine learning to generate classifier models. Image generated with Biorender.com.

https://doi.org/10.1371/journal.pone.0260098.g001
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was set to keep one pump (right) always on and collect 1 L of room air at 200 mL min-1 using

either one or two sorbent tubes. During air supply collection, the ReCIVA and field blank col-

lection tubes were strapped securely to a pre-cleaned glass head and set to collect onto the

other one or two tubes (left) using the same parameters. The cart and glass head were cleaned

using a 70% ethanol solution or isopropyl wipes at least 1 hour prior. Environmental blanks

were stored, transported, and analyzed alongside corresponding breath samples.

Preconditioning of thermal desorption tubes

Prior to breath sample collection, TD tubes were preconditioned using a TC-20 TD device

(Markes International, South Wales, UK) with 55 to 60 mL min-1 nitrogen (99.9999%) gas

flow at 330˚C for at least 2 hours. Tubes were capped with stainless steel travel caps with Viton

O-rings (Owlstone Medical, Cambridge, UK) if the collection was within 7 days; or with brass

caps fitted with polytetrafluoroethylene ferrules if stored for a longer period. All tubes were

wrapped in non-coated aluminum and were placed in aluminum screw-top canisters, sealed

with aluminum wrap, and stored at 4˚C. Further, the wrapped tube canisters were transported

via a cooler to the clinic before and after collection. These additional measures were taken to

help prevent the contamination, loss of sample, and slow diffusion of analytes across the differ-

ent sorbent beds inside the tube, a porous polymer and graphitized carbon [10].

Separation and isolation of VOC using TD-GC-FAIMS

Thermal desorption was carried out using a Unity-xr TD unit (Markes International, South

Wales, UK) equipped with a material emissions cold trap. During analysis, each tube was pre-

purged with nitrogen gas for 10 minutes with split flow on at 50 mL min-1. Sample tube

desorption was set to 120˚C for 10 minutes at 50 mL min-1 onto the 0˚C cold trap solely. The

trap was purged for 2 minutes, then heated at a rate of 100˚C min-1 to 140˚C and held for 6

minutes, sending VOC through the 130˚C TD-GC transfer line. Separation was performed

using a Trace 1310 GC (Thermo Fisher Scientific, Waltham, Massachusetts) coupled with a

Lonestar FAIMS detector (Owlstone Medical, Cambridge, UK). VOC were separated on a HP-

5 (Agilent, Santa Clara, California) fused silica GC column (30m length × 0.25 μm thick-

ness × 0.32 mm inner diameter) with helium (99.999%) carrier gas. GC controls were set for

an initial 40˚C hold of 2 min, ramp to 120˚C at 5˚C/min, hold for 2 min, and final ramp to

200˚C at 8˚C/min for a final hold of 6 min. Medical-grade clean air was introduced into the

130˚C GC-FAIMS transfer line at a rate of 2700 mL min-1, providing the reactive ion cloud

needed for ionization of emerging analytes.The FAIMS was configured such that the magni-

tude of the alternating electric field, or dispersion field (DF), voltage cycled through 45 V, 55

V, and 65 V with a total of 5192 scans across the GC runtime. The compensation field (CF)

voltage scanned to correct differential ion drift across 512 preset increments between– 6 V and

6 V direct current. Detected ion intensity was measured over a range from 0 to 10 pA.

FAIMS data processing

Data from FAIMS were pre-processed and parsed using an automated MATLAB 2019b

(MathWorks, Natick, MA) processing pipeline to (1) separate the ion intensity matrices for

each DF setting, (2) subtract out environmental VOC and background current fluctuations

using room air or air filter field control blanks (as required), and (3) generate a max peak ion

chromatogram for each sample. The first step involved parsing the raw DF settings, and then

combining the negative and positive ion intensity matrices to generate three FAIMS DF-spe-

cific matrices (512 CF scan points by 3460 time charge points). Next, environmental samples

were directly subtracted from their corresponding breath samples across the entire 1.77
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million data points to generate a separate dataset for later classification analysis. To further

simplify the data to a single axis, the outer matrix cells with values below the overall max base-

line intensity (0.0104 pA) were eliminated, limiting the matrix to 256 CF scans between -3 V

and 3 V and removing the terminal ~40 seconds (60 time charge points) of the GC run The

maximum intensity value across all CF scans for each time resolved point was selected, simplif-

ing the ion peaks to a single time charge axis S1 Fig. The breath sample data were now repre-

sented by the resulting three DF-specific time resolved separation-based chromatograms (SC),

comprised of 3400 ion intensity values S2 Fig.

Supervised machine learning analysis

For generating disease state classifiers, SC were imported into MATLAB 2019b Classification

Learner App.. A training set comprised of six randomly selected patients from each of stages 0,

1, 2 and 3. Twenty-four classifier model types were trained and subsequently tested for each

analysis, generating a confusion matrix and model performance characteristics using 5-fold

cross-validation. The classifiers with the best performance metrics (AUC > 0.7) were selected

and then further tested and evaluated in an independent external validation set.

Results

Intra-individual variability of volatolomic detection

To analyze intra-individual variability,breath samples were obtained from a single healthy

individual and using a standard protocol. Five breath samples comprising of one liter of breath

were collected on five separate days within a 7-day period. Each sample was collected after an

overnight fast of at least six hours with only water, and collected between 7:30 and 10:00 AM.

Data was collected using FAIMS DF settings of 45 V, 55 V, or 65 V, at a CF of 0.55V. From

each dataset, molecular features (MF) along the positive reactive ions detected were identified

and analyzed. The max positive ion peak intensity derived from the background air passed

through the FAIMS was 0.391 pA. MF were thus defined as those with distinctive retention

times and peak maximum intensity beyond a threshold set at 0.5 pA. MF may reflect one

VOC, although superposition of peaks can occur in some instances due to co-elution. Of note,

even small shifts in ion intensity could reflect the presence of individual low abundance VOC.

The thresholds set therefore enabled elimination of all background fluctuations, and focused

the analysis on the most abundant volatolomic content in the sample. First we analyzed the

variability in MF detected in technical replicates collected on the same day. The overall coeffi-

cient of variation (CV) in technical replicates across all DF settings was 5.7%. Next, we deter-

mined the biological variation in detection of MF from day-to-day. An average of 60.1 MF

were detected across all settings from day-to-day, with a CV of 14.8%. Next, we evaluated the

detection of MF and variability at different DF settings. The average number of features varied

at each DF setting, with far fewer detected at DF 65 V when compared with either DF 45 V or

DF 55 V (Fig 2). The overall CV in number of MF detected ranged from 13% at DF 55 V to

34% at DF 65 V.

Study subjects

The study population comprised of 50 subjects, with an equal proportion of males and females.

86% of study participants were white and 90% were non-Hispanic. The mean age of the popu-

lation was 55.4 years and the overall mean BMI was 29.8. All except one individual were non-

smokers. None of the participants reported any known occupational exposure to vapors. None

of the participants reported any kind of upper respiratory infection. Other self-reported
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symptoms included cough (51%), dyspnea (18%), abdominal pain (38%), diarrhea (15%) and

halitosis (11%) within the two weeks preceding sample collection.

All group and stage designations were verified by two experienced hepatologists with full

consensus. 11 study participants did not have cirrhosis or portal hypertension and were desig-

nated as stage 0. Cirrhosis or portal hypertension was present in 39 participants. Of these the

primary etiology was non-alcoholic steatohepatitis (21 persons), chronic hepatitis C virus

infection (5 persons), alcohol-related liver disease (6 persons), hemochromatosis (1 person),

primary sclerosing cholangitis (2 persons), and non-cirrhotic portal hypertension (4 persons).

Of these 39 participants, 14 were designated as stage 1 (no ascites, no varices), 15 as stage 2

(with varices present but no ascites), and 10 as stage 3 (with decompensated disease). Two per-

sons had hepatic encephalopathy. None of the participants had severe stage 4 disease as

defined by a history of recurrent variceal hemorrhage, refractory ascites, and hyponatremia or

hepatorenal syndrome. In these participants, the median Model for End Stage Liver Disease

(MELD) score, was 10 with a range from 6 to 28, the median AST to platelet ratio index

(APRI) was 0.744 with a range from 0.215 to 3.539, and the median Fibrosis-4 (FIB_4) score,

was 3.37 with a range from 0.59 to 14.82. Detailed characteristics of the groups are described

in Table 1.

Sample collection and storage

A standardized set of instructions and protocol was used. A four-hour fast was required. How-

ever, most subjects had fasted overnight as collections were scheduled during the early morn-

ing. 350 samples (200 exhaled breath collections and 150 room air or air filter collections) were

collected for this study. Samples were stored in sorbent tubes for a median of 7 days prior to

TD-GC-FAIMS analysis. When long-term stored samples were removed for studies of opti-

mized conditions, the median storage was 4 days.

Analysis of molecular features

MF, bracketed within time defined parameters, were identified using the three DF-specific SC

from each breath sample. The peak maximum ion intensity and peak area were calculated for

each MF, which were averaged across all technical replicates for each patient. We examined

the variability of each MF within biological replicates with age, or underlying etiology. A

Fig 2. Intra-individual variability of molecular features detected in breath analysis. Molecular features (MF) were defined based on identified

peaks with an intensity greater than a threshold of 0.5 pA. Twenty breath samples were collected using a standardized protocol from a single

healthy volunteer over a five-day period. Chromatograms were extracted at a pre-defined compensation field at dispersion field (DF) settings of

45 V, 55 V or 65 V, and the number of MF present were quantitated. (A). The total number of MF identified at each DF setting, or with all three

DF combined, on each of separate collection day. (B). The coefficient of variation (CV) of separate analyses at each DF setting alone or with all

three DF combined is depicted. Colored dots indicate day of sample collection.

https://doi.org/10.1371/journal.pone.0260098.g002
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greater variability was observed with the latter, particularly in samples from participants aged

45yr or younger S3 Fig. We first analyzed both peak max and area separately within each dis-

ease group to determine which was more informative. A one-tailed paired student’s t-test was

used to compare these between samples from healthy controls, participants with stage 0, and

those with stage 1/2/3 disease. Ten MF with peak intensity and eight MF with peak areas were

identified that had >30% differences between these two groups, with p values< 0.05. The area

under a receiver operating characteristic curve (AUC) was determined for each one of these.

The AUC ranged from 0.547 to 0.785 for individual MF peak intensity, and from 0.379 to

0.774 for individual MF peak area. There was a strong correlation (R2 = 0.93) between AUC

for peak intensity and AUC for peak area for individual MF. These findings indicated that the

use of either the peak max intensity or the peak max area would suffice for analytical use to

generate models. Eight unique features had an AUC greater than 0.7 (Fig 3). Amongst these,

four showed a trend to increase with disease stage. We postulated that these MF would be

more likely to reflect VOC that are directly impacted by liver function or portal hypertension.

A logistic regression analysis of the MF with the highest AUC and associated with disease stage

was performed and a MF score derived (Fig 4). Next, we assessed the relationship of the MF
score to disease stage using MELD score and FIB-4 scores. The MF score was higher in Stage 3

disease than in Stage 1/2 disease. A MF score of 0.45 had a sensitivity of 90% and specificity of

57% for classifying the presence of cirrhosis or portal hypertension. The AUC of the MF score
for classifying the presence of cirrhosis was 0.785. Thus, simple predictive scores can be gener-

ated from an analysis of intensity-threshold defined features in volatolomic analysis.

Classifiers based on machine learning of global volatolomic output

Disease-associated alterations in VOC that have a low abundance may be detectable but may

fall below arbitrarily defined intensity thresholds. To determine the utility of incorporating

these minor, yet potentially informative volatolomic changes within a biomarker algorithm,

we analyzed the entire GC-FAIMS output for each sample. Classifier models were generated

Table 1. Study subjects.

Stage 0 Stage 1 Stage 2 Stage 3 Overall

(n = 11) (n = 14) (n = 15) (n = 10) (n = 50)

Age mean (SD) 43.8 (12.2) 56.2 (10.4) 58.1 (13.2) 62.8 (11.0) 55.4 (13.2)

Age median (range) 45 (24–60) 57.5 (35–69) 61 (33–76) 64.5 (42–74) 57 (24–76)

n,% female 6 (54%) 6 (42%) 8 (53%) 5 (50%) 25 (50%)

n, % white 5 (45%) 13 (92%) 15 (100%) 10 (100%) 43 (86%)

n, % Hispanic 1 (9%) 1 (7%) 3 (20%) 0 5 (10%)

Cirrhosis (number) 0 13 12 10 35

Body mass index, mean (SD) 29.2 (5.9) 30.8 (5.6) 29.7 (6.8) 29.1 (5.2) 29.8 (5.8)

n,% nose breathers 10 (90%) 10 (71%) 10 (67%) 6 (60%) 36 (72%)

n,% cough 0 1 (7%) 2 (13%) 2 (20%) 5 (10%)

n, % shortness of breath 0 1 (7%) 3 (20%) 1 (10%) 5 (10%)

Mean duration of fast (hours)

Solid foods 12.8 13.5 11.7 10.4 12.2

Liquids 5.8 4.7 4.9 1.4 4.3

Most recent use of live yoghurt (n, %)

More than one week 8 (72%) 9 (64%) 13 (86%) 4 (40% 34 (68%)

Within past week 2 (18%) 2 (14%) 1 (7%) 4 (40%) 9 (18%)

Within past day 1 (10%) 3 (22%) 1 (7%) 2 (20%) 7 (14%)

https://doi.org/10.1371/journal.pone.0260098.t001
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by using supervised machine learning in an unbiased approach to analyze the time resolved SC

under DF 45 V. The average analytical run time was 2164.1 ± 1.6 (SD) seconds, with a range

between 2160.2 to 2168.0 seconds. While minor, the inherent variability in run times (±
0.18%), can confound an assessment of VOC output.

Fig 3. Breath analysis of molecular features. Breath samples were collected using a standard protocol from 50 patients. Chromatograms

depicting the maximum intensity across all compensation fields at dispersion field (DF) settings of 45V, 55V or 65V were extracted. MF were

defined based on identified peaks with an intensity greater than a threshold of 0.5 pA and designated with a four-digit number that included

the DF setting as the first two, and order of separation as the second two digits. MF with differential ion intensities were isolated. The data

represents the (A) the area under a receiver operator characteristic curve (AUC) for individual MF for the detection of cirrhosis; (B) MF peak

intensity in samples from persons with different stages of disease. The data represents the mean and standard deviation for MF peak ion

intensity in pA.

https://doi.org/10.1371/journal.pone.0260098.g003

Fig 4. Performance of MF score. An MF score was derived using logistic regression analysis for the molecular feature

(MF) with the highest area under a receiver operating characteristic curve (AUC). Receiver operator curves for the MF
score for presence or absence of cirrhosis (A) or for the indicated cirrhosis disease stages (B). Variation in MF score at

different disease stages (C), and with Model for End Stage Liver Disease (MELD) or FIB-4 scores (D). The data

represent mean and SD of the MF score.

https://doi.org/10.1371/journal.pone.0260098.g004
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To determine whether technical variations in volatolomic detection would preclude effec-

tive disease classification, we determined the inter-and intra-individual variability across dif-

ferent samples or participant technical replicates using a pre-trained convolutional neural

network (CNN), ResNet-50. First, the entire FAIMS DF-specific matrices were imported into

the fully connected CNN, generating 2048 intermediate prediction values that are used to

determine the final categorization. We calculated the Euclidean mean distance (EMD)

between these predictive values, providing a pair-wise measurement that reflects the dissimi-

liarity in ResNet-50 classification between samples. The average EMD across four biological

replicates from a single healthy individual collected over five separate days was 1.44, and across

technical replicates on each day was 1.39. In comparison, the average EMD for samples from a

random selection of cirrhotic patients was 1.99 and in the healthy controls group was 2.45 S4

Fig. Thus, the variability across different individuals exceeded that occurring as a result of

technical or biological variation within a single individual’s FAIMS breath sample.

These data support the potential utility of global volatolomic analyses to develop classifier

biomarkers. In order to further reduce technical variation, we eliminated samples that had

been stored for more than 6 weeks prior to analysis, or where artifacts due to humidity con-

tributed to signal degradation. 173 samples (87%) met these selection criteria.Machine-learn-

ing training and independent validation was done using MATLAB and the performance

validated in an independent validation set.

Classifier model SC-2A was generated using ensemble learning using a random under-sam-

pling boosted trees (RUSBT); it had a specificity of 75% with a sensitivity of 88% for the detec-

tion of cirrhosis (Fig 5). To evaluate the potential impact of environmental VOC on these

classifiers, SCs were generated with the respective air supply filter blank sample subtracted or

room air blank sample subtracted, and the impact on classifier model performance was

assessed. Subtraction of either the air filter or room air data prior to model generation

improved the sensitivity of the classifier models for detection of cirrhosis, with former being

Fig 5. Performance of volatolomic models for the detection of cirrhosis. Volatolomic classifier algorithms were generated by machine learning

based analysis of time resolved separation chromatograms (SC). (A.) Classifiers were generated for the detection of cirrhosis. Models were trained on a

random set of samples from 24 patients, and the exported models’ performance was assessed in an independent validation set of samples from the

remaining patients. The sensitivity and specificity of models based on random under-sampling boosted trees (RUBST) or Subspace K nearest

neighbors (SKNN) are shown along with performance characteristics for each model. (B.) Effect of environmental volatile compounds on performance

of models for the detection of cirrhosis. Volatolomic classifiers were generated from analysis of baseline chromatograms, or after subtraction of

concomitantly collected air-filter or room-air blank sample data. (C.) Classifiers were generated for the detection of decompensated disease (Stage 3) in

persons with cirrhosis alone–Model SC-2B using Gaussian Naïve Bayes (GNB), or in the persons with cirrhosis or non-cirrhotic portal hypertension–

Model RT-4B using Medium Gaussian support vector machines (GSVM). These models were trained on a random set of samples from 18 liver disease

patients, and performance was assessed in an independent validation set of samples from 17 patients for SC-2B or 21 patients for RT-4B. The

sensitivity and specificity of models are shown along with performance characteristics for each. AUC: area under the receiver operator characteristic

curve.

https://doi.org/10.1371/journal.pone.0260098.g005
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100% sensitive. However, elimination of either room air or air filter flanks did not improve

specificity for detection of cirrhosis.

While other models, such as SC-1A generated using Subspace k-Nearest Neighbors

(SKNN) had a higher sensitivity of 94.9%, their specificity was lower. The performance of the

models was similar across different stages S5 Fig. Notably, models trained on datasets that

included cases of non-cirrhotic portal hypertension showed a higher sensitivity of 92% while

maintaining specificity of 75%. Thus, changes related to portal hypertension may be important

contributors to volatolomic outputs.

Additional models were generated for the detection of stage 3 disease in persons with

known cirrhosis or portal hypertension. A classifier based on a Gaussian Naive Bayes (GNB)

SC-2B had a specificity of 0.769 and a sensitivity of 0.739 with an AUC of 0.754. With the

inclusion of data from patients with non-cirrhotic portal hypertension, classifiers for predic-

tion of decompensated cirrhosis could be generated using Medium Gaussian support vector

machines (GSVM) that had a higher specificity (0.903) albeit with a lower sensitivity. Prepro-

cessing to subtract out room air blanks improved the sensitivity but not the specificity. How-

ever, the subtraction of air filter blank data did not improve either sensitivity or specificity.

Composite tandem models were generated by combining individual SC based classifiers for

the prediction of cirrhosis that could also further separate into compensated or decompen-

sated cirrhosis (Fig 6). Combining both RUSBT and GSVM classifiers into a single tandem

model RT-4AB performed well in distinguishing either compensated or decompensated cir-

rhosis from those without cirrhosis. The tandem model had an accuracy of 89% for detection

of the presence of cirrhosis, and 84% for the detection of decompensation when cirrhosis was

present. A separate tandem model SC-2AB combining both RUSBT and GNB models and that

included data from patients with non-cirrhotic portal hypertension had better performance

with a sensitivity of 83% and specificity of 78% for detection of stage 3 disease. In conclusion,

with particular attention to pre-analytical variables sample collection and processing, the use

of automated machine learning derived models based on time resolved volatolomic profiling

provide a higher performance alternative to the use of predictive scores based on intensity

derived MF based scores in breath samples.

Fig 6. Performance of tandem classifier models. Tandem models were created by combining individual models for classification of cirrhosis and for

classification of stage 3 (decompensated) disease. (A) In the tandem model, samples classified as cirrhosis using the former model would then be

subsequently sub-classified into either compensated or decompensated disease using the latter. Models were trained and validated on a set of optimized

samples, and performance validated on an independent set of samples using the exported tandem model. (B,C) The sensitivity and specificity (top) and

confusion matrices (bottom) for tandem models for distinguishing between disease stages in independent validation cohorts are shown for subjects with

(B) cirrhosis only (SC-2AB), or (C) on either cirrhosis or non-cirrhotic portal hypertension. (RT-4AB).

https://doi.org/10.1371/journal.pone.0260098.g006
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Discussion

In this pilot study, we demonstrate the feasibility of a systematic approach to the detection of

exhaled breath-based volatolomic profiles by illustrating their use for the detection of cirrhosis.

These profiles capture the breadth of metabolomic activity without direct identification of

individual VOC, and can capture information from low abundance VOC. The volatolomic

profiles were generated by TD-GC-FAIMS as a three-dimensional data matrix comprising of

time resolved ion intensities at different compensation field points. Intensity defined features

derived from these data matrices can be used to generate a biomarker score whereas time-

resolved features can be used to generate disease classifiers using machine learning. Thus both

intensity and time resolved features of global breath volatolomic analyses could be used to gen-

erate clinically useful biomarkers that are distinctive, yet complementary. The multimodality

separation approach combining GC for physical and time dependent separation with FAIMS

for ion differential mobility separation provides higher resolution separation of VOC within a

single work stream. Combining the data obtained with the experimentally derived algorithmic

classifiers offers a platform that can be adopted within diagnostic laboratories.

The variability and sensitivity of VOC detection on breath analysis have limited the ability

to develop breath-based biomarkers. Sources of variation can include environmental, techni-

cal, biological or patient-specific factors. Patient age, gender, diet, oral hygiene, smoking his-

tory, body mass, medical co-morbidities, and concomitant use of probiotics, antibiotics or

other drugs could potentially impact on breath VOC changes. However in one study, alter-

ations in hematological or biochemical markers such as white-blood cell count, cholesterol, or

triglyceride levels were not reflected in changes in VOC profiles [11]. Technical factors that

can contribute to variability can include instrument settings or scanning rate. GC separation is

susceptible to minor RT variations during volatile physical separation; although, the use of TD

technology provides a more consistent method for sample introduction into the column. The

humidity of the FAIMS clean air supply can alter background noise and reduce the sensitivity.

Additionally, perceptible but minor increases in scan rate were observed with current FAIMS

settings. Robust deep learning approaches that can incorporate these effects should be evalu-

ated when analyzing disease-associated volatolomic profiles. Data from raw detector outputs

such as those used in this study are less amenable to noise filtering or other correction steps

when compared with data generated from established chromatographic methods. Although

many technical factors that can contribute to variation cannot be completely eliminated, their

impact can be minimized by using meticulous collection and analytic protocols. The utility of

volatolomic signatures as disease biomarkers will thus be highly dependent on disease-associ-

ated alterations that are of sufficiently greater magnitude to overcome some of these variations.

As demonstrated in this pilot study, this is feasible for individuals with cirrhosis using

GC-FAIMS.

Approaches using GC-MS-based VOC identification requires hands-on, stringent analysis

by skilled personnel. Operator-generated discrepancies further increase the amount of non-

biological information within the dataset. Automated assessment of raw instrument data out-

put bypasses the need for manual specialist involvement and processing while ensuring consis-

tency in detection and analysis. The supervised use of CNN trained on raw GC-MS abundance

matrices based on time resolved mass-to-charge ratio has shown high sensitivity for VOC

detection [12]. Automation of analysis would reduce the labor required for large cohort meta-

bolomic studies and also provide a framework for standardization for multi-site studies that

may enable detection of batch effects [13]. In addition, automated methods of assigning time

or intensity defined descriptors to individual VOC verified through the use of standards could

further result in the streamlined recognition of individual disease associated VOC.
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Sample storage conditions are of particular importance for breath VOC analysis, but their

effects can be mitigated by limiting the storage time of samples prior to analysis. Although

storage of breath samples at 4˚C and analysis within 30 days has been recommended [14, 15],

VOC stability and lack of storage artefacts were reported during storage for 1.5 months at

-80˚C using dual-bed Tenax TA and Carbograph sorbent tubes. Our models performed best

when trained and tested on samples that had not undergone prolonged storage. Sources of

confounding artifacts during storage could result from the migration and separation of

trapped VOC between beds within multi-sorbent tubes, leakage out of their caps, or contami-

nation from VOC that diffuse into the storage tubes onto the sorbent material from the cool-

ant, external environment, or from foreign substances adhering to the non-emitting tube caps.

The study has some limitations. The study cohort encompassed a broad range of diseases of

diverse etiologies that may have variable metabolic effects on VOC production. Having demon-

strated the feasibility within this context, further studies to determine the utility of volatolomic

profiling as a biomarker of specific clinical phenotypes in disease-specific cohorts are warranted.

A further limitation is the reliance on algorithmic approaches for data obtained from a single

study site. The use of a novel separation approach precluded the validation in an independent

setting. Cross-site validation studies will become possible once the approaches in this study

have been adopted and implemented in other settings. These will require particular attention to

evaluate for potential batch effects that could arise as a result of the collection or analysis envi-

ronment, instrument use and operator practices. Standardization of volatolomic profiling across

different sites will be necessary prior to further use as diagnostic biomarkers in practice. This

would entail the development and use of volatolomic-centric quality control mixtures within

and between studies to compare cross-study measurements and the use of within-batch correc-

tion algorithms to mitigate the impact of any batch effects that are observed [16].

The use of volatolomic signatures and machine learning to generate and analyze predictive

biomarker profiles obviates the need for detailed identification of individual VOC. Future

studies directed towards the targeted detection and identification of specific VOC metabolites

that are informative components of the volatolomic biomarker profiles may be considered,

and could eventually enhance our understanding of underlying disease pathophysiology.
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