

Diagnosis of active smear-negative tuberculosis by exhaled breath analysis

N. Fens¹, P. Brinkman¹, M.P. van der Schee¹, H. Buijze¹, R. Top¹, T. van der Poll², P.J. Sterk¹

Departments of Respiratory Medicine¹ and Internal Medicine², Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands

Rationale

- Treatment and prevention of further spread of Tuberculosis (TB) in low-income countries is still problematic
- An accurate, cheap and simple to use diagnostic test is lacking
- Especially those patients suspected of TB in whom sputum ZN-smear is negative pose a diagnostic problem
- Exhaled breath analysis showed promising results for diagnosis of active TB (*Phillips, Tuberculosis 2012*)

Hypothesis

• Breath analysis can accurately distinguish between smearpositive TB and healthy controls, and between smear-negative patients with and without TB

Aim

• To investigate whether the breath-print of patients with smear-positive TB and healthy controls and of smear-negative patients with and without TB could be discriminated by an integrated electronic nose platform and GC-MS.

Methods

Design: cross-sectional case-control study, Chittagung Bangladesh

Inclusion criteria:

- patients with suspected TB: chest X-ray abnormalities and/or positive clinical score (Bangladesh National Guidelines TB, 4th ed.)
- healthy controls: no suggestive symptoms, negative TB history

Suspected TB:

- Positive sputum smear: TB confirmed (case)
- Negative staining:
- TB confirmed by positive Xpert PCR on sputum or BAL fluid (case)
- TB excluded by negative Xpert PCR on sputum or BAL fluid (control)

Breath analysis:

- Exhaled breath was collected by inhalation of VOC filtered air and exhalation of a vital capacity volume into a Nalophan bag
- Breath volatile organic compounds (VOCs) were stored on tenax sorbent tubes and send for transportation
- Exhaled breath was analyzed by:
- A platform of electronic noses, with a total of 190 sensors (Brinkman et al. ERS 2012)
- Gas Chromatography Mass Spectrometry (GC-MS)

Statistics (R 2.11.1):

eNose

- principal component (PC) analysis followed by linear discriminant analysis providing a cross-validated bootstrap-based ROC curve
 GC-MS
- consistent with eNose analysis, preceded by analyte selection through univariate analysis (P<0.1) on log transformed data

Results **Table 1: Subject Characteristics** GC-MS (58) non TB (25) TB (26) Smoking (TB treatment) Positive clinical score b Chest X-Ray abnormalities **Smear Negative** Figure 2: Results eNose Platform Spec. 0.852 (95%CI 0.74-0.97) 75% Patients with TB vs. non TB 80% **ROC** curve non-TB vs. TB

• Patients with TB, smear positive and smear negative (positive PCR) could be discriminated from non-TB (negative PCR and healthy controls) using the eNose platform based on 1 PC (p<0.0001)

1- specificity

• GC-MS analysis could discriminate patients with TB, smear positive and smear negative (positive PCR) from non-TB (negative PCR and healthy controls) with a cross validated accuracy of 81%

Figure 4: classification overview

Xpert PCR	eNose	GC/MS	eNose + GC/MS
ТВ	75%	80%	60%
NON-TB	84%	80%	64%
TOTAL	80%	80%	62%

• Diagnosis of TB by eNose and GC-MS might be derived from different VOCs

Conclusion

- TB can be accurately diagnosed by exhaled breath measurements using an integrated electronic nose platform or GC-MS
- Diagnosis of TB could also be established in an intention-todiagnose population of smear-negative patients
- Diagnosis of TB by eNose and GC-MS might be derived from different exhaled biomarkers

Implications

- Exhaled breath analysis is sensitive and specific for smear positive and smear negative TB, confirmed by Xpert PCR
- Exhaled breath analysis is cheap, easy to perform, non invasive and on site available, which makes it a promising solution for the diagnostic difficulties in patients suffering from TB in low income countries
- The results of GC-MS analysis can be used to develop a tailor-made eNose with sensors specific for differentiating VOCs