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Visualization of exhaled breath metabolites reveals
distinct diagnostic signatures for acute
cardiorespiratory breathlessness
Wadah Ibrahim1†, Michael J. Wilde2,3*†, Rebecca L. Cordell2†, Matthew Richardson1,
Dahlia Salman4, Robert C. Free1, Bo Zhao5,6, Amisha Singapuri1, Beverley Hargadon1,
Erol A. Gaillard1, Toru Suzuki7,8, Leong L. Ng7, Tim Coats9, Paul Thomas4, Paul S. Monks2,
Christopher E. Brightling1, Neil J. Greening1, Salman Siddiqui1,10*,
On behalf of the EMBER Consortium

Acute cardiorespiratory breathlessness accounts for one in eight of all emergency hospitalizations. Early, non-
invasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to find
and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute cardiorespiratory disease
and understand breath metabolite network enrichment in acute disease, with a view to gaining mechanistic
insight of breath biochemical derangements. We collected and analyzed exhaled breath samples from 277 par-
ticipants presenting acute cardiorespiratory exacerbations and aged-matched healthy volunteers. Topological
data analysis phenotypes differentiated acute disease from health and acute cardiorespiratory exacerbation
subtypes (acute heart failure, acute asthma, acute chronic obstructive pulmonary disease, and community-ac-
quired pneumonia). A multibiomarker score (101 breath biomarkers) demonstrated good diagnostic sensitivity
and specificity (≥80%) in both discovery and replication sets and was associated with all-cause mortality at 2
years. In addition, VOC biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation.
Louvain clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly spe-
cific enrichment patterns in all acute disease subgroups, for example, selective enrichment of correlated C5-7
hydrocarbons and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute
asthma. This study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associ-
ated subtypes and metabolic clusters of disease-associated VOCs.
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INTRODUCTION
Breathlessness due to cardiorespiratory diseases accounts for more
than one in eight of all emergency admissions to hospital (1).
Despite the same presenting symptom, the etiology of acute breath-
lessness is highly varied, with diverse disease trajectories and ther-
apeutic options. Diagnostic evaluation of acute breathlessness is
heavily reliant on investigations, such as blood-based biomarkers
[e.g., C-reactive protein (CRP) and B-type natriuretic peptide]
and radiological procedures. These biomarkers have clinical
utility primarily in patients with single pathologies but have poor
discriminatory power in patients with multifactorial presentations
of acute breathlessness and are particularly challenging to interpret

in the context of preadmission treatment exposure (e.g., antibiotics
for pneumonia and admission CRP values) (2).
Breathomics, the characterization of volatile organic compounds

(VOCs) in exhaled breath, enables the evaluation of diagnostic and
prognostic biomarkers in acute breathlessness directly from the
lung and incorporating metabolites from the systemic circulation
(3). The assessment of exhaled, low-molecular weight biochemicals,
chemically classified as VOCs, has been presented as a new para-
digm for the development of rapid, noninvasive diagnostic and
prognostic biomarkers. However, the scarcity of robustly powered
clinical studies, combined with a lack of standardization in
sample collection and analysis and data and chemometric process-
ing, have delayed further translation of this technology to clinical
settings.
Notwithstanding these challenges, the potential of breathomics

is becoming increasingly recognized in research and therapeutic de-
velopment in respiratory diseases. The emergence of powerful high-
resolution mass spectrometry (MS) and multidimensional separa-
tion technologies, such as comprehensive two-dimensional gas
chromatography coupled with MS (GC×GC-MS), which provides
visual readouts of breath-based biomarkers (4, 5), has facilitated re-
search advances. Although chemometric analyses play a vital role in
this field, the enhanced dimensionality of GC×GC-MS data enrich-
es established chemometric and imaging-based characterization
methods for visualizing, extracting, and quantifying VOC
markers from complex and previously unresolved matrices.
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Here, we present a real-world, prospective study of acutely
unwell hospitalized patients presenting breathlessness due to
severe exacerbations of cardiorespiratory etiology [asthma,
chronic obstructive pulmonary disease (COPD), heart failure, or
pneumonia] and healthy controls. By isolating and visualizing
exhaled VOCs with GC×GC-MS, coupled with rigorous clinical
phenotyping, exhaled breath metabolites were shown to have high
diagnostic accuracy for severe cardiorespiratory exacerbations (in-
cluding in the presence of diagnostic uncertainty) and to be dysre-
gulated across several pertinent volatile classes in different clinical
subtypes of cardiorespiratory exacerbation. This research provides
pivotal evidence that shows how breath biomarker platforms may
be used in acute care and demonstrates the potential for translation
of this technology into a real-world clinical setting.

RESULTS
Participant demographics and clinical characteristics
As part of the East Midlands Breathomics Pathology Node
(EMBER), exhaled breath from 277 participants recruited from
acutely breathless hospitalized patients and matched healthy con-
trols was sampled (Fig. 1). Sample size calculations are detailed
in the Supplementary Materials and Methods (“sample size estima-
tion”) and table S1. Breath samples were analyzed to identify dysre-
gulation of metabolic classes in cardiorespiratory disease and
investigate whether exhaled VOC profiles could predict acute car-
diorespiratory exacerbations despite diagnostic uncertainty and
thus have a potential role in phenotyping acute cardiorespiratory
breathlessness (fig. S1). Participants’ mean (SD) age was
60.8 ± (16.8) years; Fifty-one percent were males. Thirty patients
required supplemental oxygen on admission, and the mean admis-
sion modified early warning score (mEWS-2 score) was 2. The
cohort was made up of patients presenting the following exacerba-
tion subtypes: acute severe asthma (n = 65), acute severe COPD
(n = 58), acute severe heart failure (n = 44), community acquired
pneumonia (n = 55), and healthy volunteers (n = 55), recruited
between May 2017 and December 2018. Participants’ demographic
and clinical characteristics are summarized in (Table 1). Breath
samples were collected using a respiration collector for in vitro anal-
ysis (ReCIVA) device, adopting a standardized sampling and gated
protocol that enriches alveolar volatiles (6), and analyzed using
thermal desorption (TD) coupled to comprehensive GC×GC with
dual flame ionization detection (FID) and MS.

Unbiased discovery using TDA identifies breath markers of
acute disease
Topological data analysis (TDA) is an unsupervised machine learn-
ing tool used for the analysis of large-scale, high-dimensional, and
complex datasets. It is highly sensitive to patterns that are often
overlooked by other data reduction tools, such as principal compo-
nents analysis (7).
TDA is a well-established data analytic technique for unbiased

data-driven discovery–based phenotyping (7). TDA has proven to
be a powerful tool, yielding critical insights in the prognostic phe-
notyping (8), cancer imaging biomarker stratification (9), disease
classification using pathology biomarkers (10), and omics-based
cancer phenotyping (11). Several publications have reported the
use of TDA in the metabolomics field, for example, unbiased
lipid phenotyping of lung epithelial lining fluid (12).

To achieve an unbiased discovery of exhaled VOCs predictive of
the acute disease groups, patients were block-randomized post hoc
into a discovery cohort of 139 participants (acute asthma, n = 33;
acute COPD, n = 29; acute heart failure, n = 22; community ac-
quired pneumonia, n = 28; and healthy volunteers, n = 27) and a
replication cohort of 138 participants (acute asthma, n = 32; acute
COPD, n = 29; acute heart failure, n = 22; community acquired
pneumonia, n = 27; and healthy volunteers n = 28). Randomization
allowed internal replication of diagnostic breath biomarkers while
adjusting for relevant confounders. Details of the randomization
and further clinical characteristics of the cohorts can be found in
tables S2 to S3. Chemometric analysis and quantification of
VOCs was performed blinded to clinical diagnosis by two analytical
chemists (M.J.W. and R.L.C.), with biostatistical analyses linking
subject identifier to chemometric biomarkers performed following
data lock by an independent statistician (M.R.).
Eight hundred and five unique chromatographic features

(peaks) were detected across the breath sample set using TD-
GC×GC-FID/MS with 404 features detected on average in each
sample. TDA applied to these 805 chromatographic features
yielded topologically distinct networks that distinguished underly-
ing causes of acute breathlessness while anchoring to corresponding
blood-based biomarkers in both the discovery and replication
cohorts (Fig. 2). Specifically, healthy volunteers and patients with
acute heart failure formed distinct topological groupings in both
discovery and replication populations. Respiratory admissions due
to acute asthma, acute COPD, and pneumonia formed a topological
continuum albeit within distinct regions of a single network in the
replication cohort; similar findings were observed in the discovery
cohort, with the exception of acute asthma forming a distinct
grouping.

Breath biomarker clinical prediction scores
To create a concatenated list of exhaled breath biomarkers suitable
for diagnostic application, we applied a threshold of 80% feature-
presence per patient group, below which, features were removed
to effectively reduce the number of features used in subsequent
models with more than 20% of zero values for peak areas (fig.
S2). We found that the zero-valued peak areas were randomly dis-
tributed across the disease groups in all but seven features. The ex-
clusion of the seven features where there was some evidence that
zero-valued peak areas were not randomly distributed across the
disease groups did not alter the results of the regression models.
Further filtering steps using least absolute shrinkage and selec-

tion operator (LASSO) and elastic net regression methods, followed
by removal of 38 peaks that were considered to be chemical and ma-
terial artifacts (e.g., siloxanes), generated a final panel of 101 exhaled
breath volatiles (tables S4 to S8). Therefore, the analysis plan per-
mitted the identification of a rich and chemically diverse response
in the VOC profile as opposed to only a handful of individual VOC
markers and afforded the generation of biomarker scores. The data
were examined for batch effects and were adjusted accordingly.
Batch effects detected related to major instrument maintenance
events, which occurred twice creating three groups. No contribu-
tions were observed on the basis of the ReCIVA device used, oper-
ator, time of day, or volume of breath sample collected, most likely
nullified by the simultaneous and consecutive recruitment across all
cohorts throughout the study to reduce potential biases (fig. S3
and S4).

Ibrahim et al., Sci. Transl. Med. 14, eabl5849 (2022) 16 November 2022 2 of 14

SC I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at C

opyright C
learance C

enter - G
et It N

ow
 on N

ovem
ber 17, 2022



The value of the generated acute disease VOC biomarker score
was found to be higher in acute cardiorespiratory patients compared
to healthy volunteers (Fig. 3A). For the discovery cohort (n = 139),
the acute disease VOC biomarker score effectively differentiated
participants with acute cardiorespiratory exacerbations from age-
matched healthy controls with an area under the curve (AUC) of
1.00, P < 0.0001, sensitivity of 1.00, specificity, positive predictive
value (PPV) of 1.00, and negative predictive value (NPV). For the
replication cohort (n = 138), the same VOC biomarker score

differentiated participants with acute disease from healthy controls
with AUC of 0.90 (0.83 to 0.96), P < 0.0001, sensitivity of 0.88 (0.82
to 0.94), specificity of 0.79 (0.63 to 0.94), PPV of 0.95 (0.91 to 0.99),
and NPV of 0.51 (0.36 to 0.65) (Fig. 3B).
To evaluate the impact of potential confounders on our model

classification, we reran our statistical models, adjusting for the fol-
lowing factors: (i) smoking status (current, ex-smoker, or never a
smoker); (ii) time between hospital admission and the acquisition
of the breath samples because this time period is often the period

Fig. 1. Study CONSORT diagram. CONSORT diagram outlining the acute study recruitment and number of analyzable GC×GC-MS breath samples.
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Table 1. Demographics and clinical characteristics of study participants. Continuous variables are presented as means ± SD. Categorical variables are
presented as numbers (%).

Total
number

Healthy
controls

Acute
asthma

Acute COPD Pneumonia Heart failure P
value

Total number of participants
(n =)

277 55 65 58 55 44

Demographics

Age *, years 60.8 ± (16.8) 63.05 ± (11.78) 44.3 ± (17.93) 69.82 ± (8.16) 60.67 ± (16.50) 70.72 ± (11.04) 0.124

Gender male (n =) (%) 143 (51%) 26 (47%) 25 (38%) 33 (56%) 27 (49%) 32 (72%) 0.008†

Body mass index (BMI)*,‡ 29.5 ± (7.3) 28.2 ± (4.5) 31.5 ± (9.0) 27.5 ± (7.7) 29.2 ± (6.9) 31.5 ± (6.5) 0.767

Smoking current smoker (n =) (%) 53 (19%) 4 (7%) 13 (20%) 21 (36%) 11 (20%) 4 (9%) 0.001†

Vital signs

Temperature (°C)* 36.7 ± (0.6) 36.1 ± (0.4) 36.8 ± (0.5) 36.7 ± (0.5) 37.1 ± (0.7) 36.5 ± (0.3) 0.000

Heart rate (beats/min)* 87.2 ± (18.5) 68.1 ± (9.54) 99.6 ± (17.2) 92.9 ± (15.6) 90.3 ± (15.4) 81.3 ± (15.6) 0.005

Respiratory rate (breaths/min)* 18.9 ± (4.2) 13.0 ± (1.8) 20.5 ± (3.4) 21 ± (2.5) 20.4 ± (4.6) 19.1 ± (1.8) 0.000

Oxygen saturations (%)* 95.8 ± (3.0) 97.7 ± (1.3) 96.1 ± (2.5) 94.0 ± (2.9) 94.5 ± (0.5) 96.5 ± (1.9) 0.001

Systolic blood pressure (mmHg)* 131.5 ± (19.2) 134 ± (15.7) 133 ± (17.7) 133 ± (20.5) 126 ± (19.4) 128 ± (22.2) 0.515

Total mEWS-2 score§,|| 1 (0–3) 0 (0–1) 2 (1–3.5) 3 (1–5) 2 (1–3) 1 (0–2) 0.000

Breath sampling

Time from admission to breath
sampling (hours)§

16 (3.0–23.0) 1 (1–1) 16 (9.2–22.7) 18 (12.5–23.0) 18 (11.0–23.0) 23 (19.0–26.0) 0.000

Symptoms assessment

Breathlessness VAS
score (mm)*,¶

58.1 ± (31.6) 6.2 ± (9.3) 76.6 ± (14.2) 71.6 ± (19.2) 67.8 ± (22.1) 67.9 ± (20.0) 0.000**

Cough VAS score (mm) *,¶ 43.3 ± (33.2) 8.7 ± (14.3) 64.5 ± (26.7) 57.8 ± (27.0) 53.6 ± (30.6) 24.3 ± (25.2) 0.000**

Wheeze VAS score (mm) *,¶ 41.8 ± (34.9) 3.4 ± (6.4) 66.2 ± (24.5) 60.3 ± (29.0) 45.1 ± (34.8) 28.1 ± (28.6) 0.000**

eMRC# score (n =) (%)

1 17 (6%) 1 (1.5%) 8 (13%) 7 (12%) 1 (2%) 0.000†

2 6 (2%) 0 (0%) 0 (0%) 5 (9%) 1 (2%) 0.000†

3 15 (5%) 6 (10%) 0 (0%) 7 (12%) 2 (4.5%) 0.000†

4 50 (18%) 16 (25%) 11 (19%) 6 (11%) 17 (38.5%) 0.000†

5a 112 (40%) 38 (51%) 32 (55%) 22 (41%) 20 (46%) 0.000†

5b 21 (7%) 3 (4.5%) 7 (13%) 8 (15%) 3 (7%) 0.000†

Exposure to antibiotics and
steroids within 2 weeks of
hospital admission

Antibiotics (n =) (%) 61 n = 0 (0%) n = 24 (36.9%) n = 23 (39.6%) n = 10 (18.2%) n = 4 (9.0%) 0.002†

Steroids (n =) (%) 57 n = 0 (0%) n = 28 (43.0%) n = 24 (41.3%) n = 3 (5.4%) n = 2 (4.5%) 0.000†

Morbidity and mortality
measures

Length of hospital stay (days)§ 3 (2–6) 2.0 (1.0–3.0) 4.0 (2.0–6.0) 4.0 (2.0–5.0) 7.0 (4.0–11) 0.000**

30 to 60 days hospital
readmission (n =)

29 7 9 6 7 0.461†

1-year all-cause mortality 12 0 1 5 1 5 0.078†

Laboratory parameters

C-reactive protein (mg/liter)§ 11 (5.0–34.2) 5 (5–5) 10.0
(5.0–23.0)

12.0
(5.0–20.7)

108.0
(53.5– 245.3)

11.0 (5.0– 22.0) 0.000**

Blood eosinophil count
109/liter§

0.13
(0.06–0.24)

0.17 (0.09–0.24) 0.18
(0.06–0.42)

0.13
(0.06–0.24)

0.08 (0.04–0.14) 0.13 (0.08–0.23) 0.000**

Troponin T (ng/liter)§ 3.3 (1.0–11.4) 2.05 (1.0–2.7) 1.55 (1.0–3.4) 3.75
(2.6–10.9)

4.3 (2.18–11.3) 20.2 (13.4–59.6) 0.000**

continued on next page

Ibrahim et al., Sci. Transl. Med. 14, eabl5849 (2022) 16 November 2022 4 of 14

SC I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at C

opyright C
learance C

enter - G
et It N

ow
 on N

ovem
ber 17, 2022



within which acute treatments are delivered; (iii) the mEWS-2,
which is a composite acuity score combining respiratory rate,
oxygen saturations, systolic blood pressure, heart rate, degree of
consciousness, confusion, and body temperature for each patient;
and (iv) prior exposure to either antibiotics or steroids for cardio-
respiratory illness in the fortnight before the index admission. We
observed improved diagnostic accuracy in the replication cohort
(AUC of 1.00, P < 0.0001) when considering these adjustments,
which would be expected with the inclusion of acuity markers for
the classification of acute illness.
Following a clinical adjudication process (“Clinical adjudication”

section in Materials and Methods), each patient was assigned a
degree of clinical diagnostic uncertainty using a 100-mm visual
analog scale (VAS) at the point of clinical triage (Fig. 3C). Diagnos-
tic uncertainty was defined as patients with values higher than or
equal to the upper quartile of 20 mm on the VAS. The acute
disease VOC biomarker score was able to identify acute disease
with an AUC of 0.96 (0.92 to 0.99), P < 0.0001, sensitivity of 0.90
(0.82 to 0.97), specificity of 0.92 (0.85 to 0.99), PPV of 0.93 (0.86 to
0.99), and NPV of 0.89 (0.81 to 0.97) (Fig. 3D).

Exhaled breath biomarker disease-specific scores correlate
with blood-based biomarkers and admission observations
As previously described, VOC biomarker scores were generated for
each of the acute disease subgroups and healthy subjects without
cardiorespiratory breathlessness. There was a weak but positive cor-
relation in the combined discovery and replication cohorts (n = 277)
between the VOC subgroup scores for pneumonia and CRP
[n = 277, correlation coefficient (r) = 0.33, and P < 0.0001] and
acute heart failure and brain natriuretic peptide (BNP; n = 277,
r = 0.33, and P < 0.0001), in addition to a negative correlation
between the healthy-state VOC score and CRP and BNP (n = 277,
r = −0.15, P < 0.0001, and −0.21, P < 0.0001, respectively; Fig. 4A).
Correlations were also identified between the acute disease VOC
score and vital observations carried out during triage (Fig. 4B).

The acute disease VOC score was also associated with 2-year all-
causemortality but not with the risk of 60-day readmission (fig. S5).

Diagnostic accuracy of breath biomarker scores in
cardiorespiratory disease subgroups
Amultinomial regression model using elastic net regularization was
fitted to the matrix of 101 breath biomarkers with the 10-fold cross-
validation repeated 1000 times. Linear combinations of the most
stable features from the multinomial regression model fitted to
the 101 biomarkers formed a set of scores for predicting probability
of belonging to the different disease groups (acute asthma, acute
COPD, pneumonia, heart failure, or healthy volunteers).
The overall classification accuracy for the statistical model gen-

erated from 101 breath biomarkers was assessed by comparing the
balanced accuracy of model trained using the true class labels versus
the balanced accuracy of the same model tested using randomly
shuffled class labels. This process was repeated 1000 times. The ba-
lanced accuracy reported in fig. S6A shows the acute disease bio-
marker score in the discovery cohort. Figure S6B shows the acute
disease biomarker score in the replication cohort, and fig. S6C
reports the overall accuracy for the model using multinomial bio-
marker scores for the five subgroups (acute asthma, acute COPD,
heart failure, pneumonia, and healthy volunteers). Replication
was not evaluated in the subgroups because the study was not
powered to do this.
For the pooled cohort (n = 277), the overall classification accu-

racy using all five biomarker scores was 0.72 [95% confidence inter-
val (CI), 0.67 to 0.77]. The balanced accuracy was 0.83 for acute
asthma, 0.78 for acute COPD, 0.80 for heart failure, 0.79 for com-
munity acquired pneumonia, and 0.93 for healthy controls (fig. S6).
Further comparative receiver operating curve (ROC) analyses

were performed on the basis of the observed separation of asthma
from pneumonia/COPD acute groups and heart failure from other
acute exacerbation groups in the discovery and replication TDA
analyses. The diagnostic AUC accuracies of the asthma biomarker

Total
number

Healthy
controls

Acute
asthma

Acute COPD Pneumonia Heart failure P
value

BNP (ng/liter)§ 40.5
(20.6–98.9)

28.40
(17.60–39.88)

20.4
(12.1–40.0)

56.3
(24.3–95.0)

56.3
(27.4–132.1)

611.8
(172.1–1259.1)

0.000**

Questionnaires

Asthma Quality of Life
Questionnaire (AQLQ) total*

65 117.3 ± (37.3)

COPD Assessment Test (CAT) * 58 26.7 ± (7.3)

COPD decaf score * 58 1.7 ± (0.8)

CURB65 score§ 55 2 (1–3)
NYHA score§ 44 2 (1–3)

*Data are expressed as means (SD) or n (%) ± (SD). †Pearson chi-square and Fisher’s exact test. ‡The body mass index (BMI) is the weight in kilograms
divided by the square of the height in meters. §Data expressed as median (interquartile range). ||Modified early warning score-2 is a guide widely used by
medical services to determine the degree of illness of a patient based on their vital signs including respiratory rate, oxygen saturations, temperature, blood
pressure, and heart rate. Vital signs were collected at the point of admission for acute disease groups. ¶Participants were asked to determine their degree of
breathlessness, cough, and wheeze on a 100-mm VAS on admission. Higher scores indicate worse symptoms. #Extended Medical Research Council (eMRC)
scale is a validated measure of perceived respiratory disability, scored from 1 to 5b. Higher scores indicate worse disability. *Kruskal-Wallis test comparing
nonparametric data. ANOVA was used to assess the differences between groups for normally distributed continuous variables and Kruskal-Wallis for
nonparametric continuous variables. Pearson chi-square and Fisher’s exact were used to assess the differences in categorical variables. The results were
considered statistically significant at P values <0.05.
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score against pooled pneumonia and COPD cohorts were AUC,
0.70 (0.62 to 0.78; P < 0.0001); sensitivity, 0.72 (0.64 to 0.83); spe-
cificity, 0.64 (0.55 and 0.73); PPV, 0.54 (0.43 to 0.64); and NPV, 0.80
(0.72 to 0.88). ROC analyses to assess the diagnostic value of the
heart failure biomarker score against other acute disease groups
were AUC, 0.78 (0.70 to 0.86) P < 0.0001; sensitivity, 0.77 (0.64 to
0.89); specificity, 0.71 (0.64 to 0.78); PPV, 0.40 (0.29 to 0.50); and
NPV, 0.92 (0.88 to 0.97) (fig. S7).
The median values of the exhaled breath VOC scores and their

distribution across disease subgroups are detailed in (fig. S8).

Figure S9 is a Venn diagram demonstrating the distribution of the
final panel of 101 exhaled breath biomarkers across the different
disease groups.
We also ran our models adjusting for the following factors: (i)

smoking status (current, ex-smoker, or never a smoker); (ii) time
between hospital admission and the acquisition of the breath
samples because this time period is often the period within which
acute treatments are delivered; (iii) the mEWS-2, which is a com-
posite acuity score combining respiratory rate, oxygen saturations,
systolic blood pressure, heart rate, level of consciousness, and

Fig. 2. TDA representing the various acute disease groups annotated by blood biomarkers. Each circle or “node” in the TDA graph represents a subject or group of
subjects. Similar subjects are grouped together in the same node, and the relative similarity of the subjects is represented by the proximity of the nodes. The size of each
node is determined by the number of subjects within it. (A) Visual mapping of the acute disease groups in the discovery cohort (n = 139) based on the discriminatory 805
features and colored by proportion of acute COPD exacerbations in each node. (B) The network is color-coded by the average values of CRP in each node in the discovery
cohort (n = 139). Higher CRP values corresponded topologically with the COPD and pneumonia patients. (C) The network is color-coded by the average values of BNP in
each node in the discovery cohort (n = 139). Higher BNP values corresponded topologically with the patients with heart failure. (D) The network is colored by proportion
of acute COPD exacerbations in each node in the replication cohort (n = 138). In replication cohort, pneumonia and COPD exacerbation subjects occupied polar ends of
the same TDA network. (E) The networks are colored by the average values of CRP in each node. High CRP values corresponded topologically with the pneumonia
subjects. (F) The networks are colored by the average values of BNP in each node. High BNP values corresponded topologically with the heart failure subjects.
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confusion for each patient; and (iv) prior exposure to either antibi-
otics or steroids for cardiorespiratory illness in the fortnight before
the index admission. We observed only marginally improved diag-
nostic accuracy: acute asthma, AUC of 0.88 (0.831, 0.933;
P < 0.0001); COPD, AUC of 0.86, (0.808, 0.918; P < 0.0001); heart
failure, AUC of 0.91 (0.849, 0.969; P < 0.0001); community acquired
pneumonia, AUC of 0.91 (0.863, 0.953; P < 0.0001); and healthy
controls, AUC of 1.0, suggesting limited confounding influence of
disease acuity on our biomarker scores (data file S1). Replication
was not performed in the subgroups because the EMBER study
was not powered for disease subgroup diagnostic accuracy.

Chemical classification of predictive markers in
disease groups
Chemical identification of the 101-biomarker panel involved com-
parison with an authentic reference compound in accordance with
the Metabolomics Standard Initiative (MSI) level 1 criteria for me-
tabolite identification. The most common chemical classes associ-
ated with acute breathlessness in this study included straight-chain
and methyl-branched hydrocarbons (30%), ketones (10%), alde-
hydes (8%), and terpenes (13%), followed by sulfur-containing
VOCs (7%), alcohols (6%), aromatics (5%), esters (3%), nitrogen-
containing VOCs (3%), ethers (2%), halogen compounds(1%),
and an assortment of other less prevalent and less relevant
classes, such as acrylates (12%) (table S9).

Fig. 3. Diagnostic accuracy of an acute VOC biomarker score. (A) Scatterplot demonstrating significant difference between breath VOC biomarker score values in acute
cardiorespiratory patients compared to healthy volunteers. The black horizontal line within the scatterplot represents the median value of the biomarker score. Mann-
Whitney test, *P < 0.0001. (B) Receiver operating characteristic (ROC) curve of participants in the discovery (black line, AUC of 1.00) and replication [blue line, AUC of 0.89
(0.82 to 0.95)] cohorts (P < 0.0001). (C) Histogram showing the number of patients with higher diagnostic uncertainty (blue bars with values greater than upper quartile
value of 20 mm). (D) ROC curve assessing the discriminatory power of exhaled breath VOCs in participants with higher diagnostic uncertainty. AUC, 0.96 (0.92 to
0.99; P < 0.0001).

Ibrahim et al., Sci. Transl. Med. 14, eabl5849 (2022) 16 November 2022 7 of 14

SC I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at C

opyright C
learance C

enter - G
et It N

ow
 on N

ovem
ber 17, 2022



Metabolite set enrichment and chemical similarity analysis
Unlike functional indications, which are reliant onmapping metab-
olites with known, well-annotated metabolic pathways, metabolic
changes indicative of response can be derived independently. To
derive clues of responsive indication, the panel of 101 features
was assessed for covarying clusters (i.e., metabolite sets).
Metabolite sets were derived on the basis of Ward hierarchical

cluster analysis using the ChemRICH method reported previously
(Fig. 5A and fig. S10) (13), and broader communities were derived
from Louvain cluster analysis (Fig. 5B and tables S10 to S13) to help
interpret the correlation graphs. Overall, 20 metabolite sets were
identified using ChemRICH, 11 of which were enriched during
acute cardiorespiratory exacerbations. The seven metabolite sets
that were up-regulated consisted of predominantly acyclic and
branched hydrocarbons (sets 3, 5, 7, and 9 in fig. S10). The
results from the analysis here demonstrated enriched coexpression
of hydrocarbons with high chemical similarity providing primary
evidence of exhaled VOCs indicative of disease response measured
in vivo. This is clearly seen in Fig. 5A, with themetabolite sets (inner
tree) labeled by broader chemical classifications (outer ring); C5-7,
C8-10, and C11-16 form clusters based on carbon number also ex-
hibiting the highest change during acute exacerbation. Owing to the
increased separation power afforded by GC×GC-MS, it was possible
to map the VOC signatures back to the multidimensional chro-
matograms for the visualization of exhaled breath metabolites,
which revealed distinct diagnostic signatures for acute cardiorespi-
ratory breathlessness (Fig. 5C).

DISCUSSION
In this pragmatic, acute-care study, we evaluated the validity of
breath biomarker profiling in high-acuity patients presenting
acute cardiorespiratory breathlessness. Using GC×GC-MS, we ob-
served that robust and validated sampling of alveolar breath coupled
with GC×GC-MS biomarker characterization demonstrated high
diagnostic accuracy for acute cardiorespiratory exacerbations.

We have also identified putative biomarker scores from subsets
of breath VOC biomarkers that classify cardiorespiratory exacerba-
tion subtypes and warrant validation in appropriately powered rep-
lication studies. Furthermore, we have identified several classes of
VOCs that are highly correlated and selectively enriched or su-
pressed in acute disease (including subgroups) compared to
health, providing potential insights into broad dysregulation of
the metabolome in acute cardiorespiratory exacerbations.
The analytical methods described here were underpinned by

robust biomarker development protocols using TD-GC×GC-FID/
MS, integral to the standardization and integration of breath anal-
ysis in large translational studies (5, 14). Several potential confound-
ers, including batch variation were addressed in detail.
Furthermore, biomarker quantification of the 101 VOCs followed
the recommendations of the MSI, with 58 compounds identified
against pure and traceable standards (level I), 21 putative identities
based onmass spectral and retention index library matches (level 2),
and 22 classified on mass spectral data (15). Markers that appeared
to localize to individual cardiorespiratory conditions could be
readily visualized using TDA.
The identification of hydrocarbons and carbonyls as the major

chemical classes was consistent with current mechanistic under-
standing, postulated as chemical end points of lipid peroxidation
resulting from oxidative stress during inflammation. Aldehydes
such as nonanal, decanal, and hexanal were predictive for asthma;
ketones included 2-pentanone (asthma), cyclohexanone (pneumo-
nia), and 2,3-butanedione (COPD), which were all previously re-
ported (4, 16–20). Individual hydrocarbons, such as 2,4- and 2,2-
dimethylpentane, 2-methylbutane, 4-methyldecane, 5-methylno-
nane, and isoprene have been previously reported as predictive
for pneumonia and heart failure (18, 21). Sulfur-containing
VOCs, such as 3-methylthiophene, allyl methyl sulphide, and car-
bonyl sulphide (found to be predictive of COPD) are associated
with bacterial metabolism, postulated to originate from the gut
(22) and, on occasions, as a result of radiation injury (23);
however, 2,3-butanedione, also predictive of COPD, has been iden-
tified as a metabolic product of bacterial isolates from patients with

Fig. 4. Correlation of VOC biomarker score with blood biomarkers and disease acuity. (A) Pearson’s correlation of disease-specific VOC scores and blood-based
biomarkers. Pearson correlation demonstrating the positive and negative correlations between breath VOC scores and blood-based biomarkers. *P < 0.05. (B) Pearson’s
correlation of disease-specific VOC scores and admission observations. Pearson correlation between the VOC biomarker score and admission vital signs. VAS, visual analog
scale (100 mm); participants were asked to rate their breathlessness on a 100-mm VAS on admission.
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cystic fibrosis (CF) (22) and postulated to be an important metab-
olite in monitoring lung infection in CF, COPD, and pneumonia.
We acknowledge that the biological origin of most VOCs within
our biomarker signature has yet to be fully elucidated. Future
studies combining carbon labeling of glucose with in vitro head-
space analysis of primary cells will be required to more precisely es-
tablish the molecular origins of VOCs identified in this report.

Not all compounds were considered to be endogenous VOCs,
with 27 possibly attributed to potential cosmetics. Eleven of the fea-
tures predictive of the control group were assigned as either possible
fragrances (e.g., α isomethyl ionone) or waxy long-chain chemicals
used in cosmetics as emollients and surfactants (e.g., stearyl vinyl
ether and isopropyl myristate). These may have been captured in
the breath sample because of the proximity of the sorbent tubes
to the patients’ faces. A frequent problem with ascribing the

Fig. 5. VOC biomarker chemical enrichment in acute cardiorespiratory exacerbations. (A) Circular correlation tree generated on the basis of metabolite set enrich-
ment and chemical similarity analysis of 101 breath volatiles associated with acute breathlessness. Branches depict metabolite sets derived using the ChemRICH; bar
graphs portray−log10 (P) and log2 (fold change) values of 101 features extracted using LASSO regression (table S4) in acute breathlessness compared with control group.
The arcs represent the Louvain clusters, derived from the correlation graph (green for up-regulated, red for not significant, and blue for down-regulated according to K-S
test result). Chemical names are colored on the basis of their chemical classification and colored regions used to summarize broader chemical groups. (B) Correlation
graph showing metabolite communities identified using Louvain clustering, with the identity and location of the cluster enriched in heart failure projected onto the
circular dendrogram. (C) (i) Example GC×GC chromatogram showing complex profile of breath metabolites, (ii) three-dimensional render of chromatogram showing
visualization of breath markers, and (iii) phenotypic differences based on features included in the breath biomarker scores (table S9) (yellow, asthma; red, pneumonia;
magenta, COPD; and cyan, heart failure). Created in part using the iTOL online https://itol.embl.de/.
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origin of VOCs is that those compounds often identified in cosmet-
ics are natural products; therefore, there is uncertainty about the
precise origin of these makers. The down-regulation in acute
disease of several of these markers may be indicative of them
being biomarkers as opposed to exogenous confounders from
cosmetics.
Coexpression and enrichment analysis of the Louvain clusters on

the correlation graph revealed a set of highly correlated metabolites
notably enriched in specific disease groups. Comparison of the
Louvain clusters with the metabolite sets identified using the
method previously described (13) demonstrated strong overlap.
The metabolites enriched in heart failure were a cluster of highly
correlated C5-7 hydrocarbons and C3-5 carbonyls with high chemi-
cal similarity (based on Tanimoto coefficients as determined in fig.
S10). The cluster included 2,4- and 2,2-dimethylpentane, 2-methyl-
butane, 2-methyl-1,3-butadiene (isoprene), 3-methylpentane,
hexane, and cyclohexane. These hydrocarbons (2,4- and 2,2-dime-
thylpentane, 2-methylbutane, and isoprene) have been individually
reported and associated with heart failure and pneumonia (17, 20).
However, the analysis here captured the collective response and
demonstrated enriched coexpression of these hydrocarbons.
The analysis also revealed a separate set of highly correlated al-

dehydes (nonanal, decanal, undecanal, and a methyldecanal
isomer), found to be potentially depleted in acute exacerbations
of asthma compared with acute exacerbations of COPD and pneu-
monia. Depletion of VOCs during in vitro experiments has been
reported as a consequence of metabolic activity by immune cells
(24–26), but the association here is tentative and should be inter-
preted with caution because of the correlation between inhaled air
and exhaled air concentrations of these compounds (median Spear-
man rank = 0.60), also previously observed (27).
Our study has some limitations. Although internally replicated,

the results presented here for acute VOC biomarker scores and car-
diorespiratory exacerbation subtype biomarker scores are limited by
the lack of external replication and internal replication, respectively.
The single center design of this study may have introduced non-
pathogenic biases related to diet, environment, and lifestyle that
might be absent in a multicenter study. The cardiorespiratory exac-
erbation disease subgroups preselected in this study were chosen as
the commonest reported causes of cardiorespiratory breathlessness
(28, 29), and there was a relatively high degree of clinical certainty in
the diagnostic labels. For these findings to be generalizable, the
identified markers will need to be validated in unselected cardiore-
spiratory populations and patients presenting mixed acute
pathologies.
In conclusion, we have conducted an acute care volatile breath

biomarker study using robust clinical and analytical technology
and have identified biomarkers with high combined diagnostic sen-
sitivity and specify in acute cardiorespiratory disease. In addition,
we have used methods enabling robust biomarker identification
and mechanistic association. Future clinical studies in acute cardio-
respiratory patients at initial presentation and triage using near
patient sensor platforms capable of detecting the volatiles identified
here are warranted to maximize the clinical impact of our discovery
biomarker approach.

MATERIALS AND METHODS
Study design
The study design, eligibility criteria, and methodology have been
described in detail previously (30). This is a prospective, real-
world, observational study (ClinicalTrials.gov Identifier
NCT03672994), carried out in a tertiary cardiorespiratory center
in Leicester, United Kingdom. Participants were recruited year-
round from May 2017 through to December 2018.
Patients with self-reported acute breathlessness, requiring ad-

mission and/or a change in baseline treatment, presenting within
University Hospitals of Leicester (UHL) were approached for
study participation. After triage and senior clinical assessment, if
a primary clinical diagnosis of (i) acute decompensation of heart
failure, (ii) exacerbation of asthma/COPD, or (iii) adult community
acquired pneumonia was suspected by the triage nurse/attending
clinician at triage, then members of the research team would eval-
uate patients against predefined eligibility criteria for study
participation.
A total of 277 participants were included in the final analysis.

Sample size attrition from the recruited 455 participants is detailed
in (Fig. 1). This was mainly due to the delayed deployment of
GC×GC-MS and analytical quality control/quality assurance (QC/
QA). These decisions were made objectively during the discovery
phase of the program, prioritizing the optimization of a robust sam-
pling and analysis pathway. Sample size calculations were informed
on the basis of estimation for adequate sensitivity and or specificity
as detailed in (table S1).
The 277 subjects were randomized post hoc to Discovery and

Replication cohorts in a 1:1 ratio through block random assign-
ment. Randomization was stratified on the basis of (i) adjudicated
clinical diagnosis, (ii) time to breath-testing from the point of hos-
pital admission, and (iii) clinical diagnostic uncertainty score. The R
package randomizr was used to perform block random assignment.
After block randomization, there were 139 and 138 subjects in the
discovery and replication sets respectively.
Inclusion and exclusion criteria and study objectives are outlined

in detail in “Study design” and “Study objectives” sections of the
Supplementary Materials. Informed consent was obtained in all
participants within 24 hours of hospitalization. Age- and/or home
environment–matched healthy volunteers were recruited. Where
environment-matched controls were unsuitable, healthy volunteers
were recruited from local recruitment databases and via advertising.
Healthy volunteers were defined as participants with no prior
history of asthma, COPD, and heart failure and had not been admit-
ted to the hospital with community-acquired pneumonia within 6
weeks of the baseline study visit. The diagnostic accuracy of the re-
ported exhaled breath VOCs was tested following the Standards for
reporting of Diagnostic Accuracy Studies guidelines (table S14)
(31). Statistical procedures presented here were carried out as com-
plete case analysis with no imputations. Transparent Reporting of
multivariate prediction model for Individual Prognosis or Diagno-
sis (TRIPOD) was followed for multivariate prediction models
(table S15) (32, 33).
The trial was conducted in accordance with the ethics and prin-

ciples of the deceleration of Helsinki and Good Clinical Practice
Guidelines. All patients provided written consent. The National Re-
search Ethics Service Committee East Midlands has approved the
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study protocol (REC number: 16/LO/1747). Integrated Research
Approval System (IRAS) 198921.

Clinical adjudication
A clinical adjudication process was introduced to precisely define
and quantify the diagnostic labels in the study, addressing any po-
tential misclassification. A panel of two senior clinical adjudicators
(S.S. and N.J.G.) reviewed all available case notes and imaging and
determined the primary diagnosis for each case by discussion to
reach a concordance. The degree of diagnostic uncertainty was
marked on a 100-mm VAS scale, blinded to given diagnosis and
blood biomarkers.
The process was implemented with emphasis on mirroring an

acute triage pathway, where all pathology data required to support
the diagnosis, e.g., CRP and BNP, are not available at the initial clin-
ical review. The degree of diagnostic uncertainty obtained from the
clinical adjudication process was factored into the block randomi-
zation, and subjects with higher diagnostic uncertainty (≥upper
quartile = 20 mm) were assessed separately as previously described
(Fig. 3, C and D).

Breath collection and analysis
Collection of breath samples
Exhaled breath collection was attempted in all consented partici-
pants using a Conformitè Europëenne (CE)-marked breath sam-
pling device RECIVA (Owlstone Nanotech Ltd.), in combination
with a dedicated clean air supply unit (34). Breath sampling was
well tolerated by all participants (6).
Sample storage and preparation
Samples were dry-purged on arrival for 2 min using nitrogen
(chemically pure grade with inline trap, BOC) at a flow rate of 50
ml min−1 and then stored in refrigeration at 2°C until analysis.
Before analysis, samples were left to reach room temperature
before being spiked with a 0.6-μl aliquot of 20 μg ml−1 standard sol-
ution containing deuterated toluene and octane, into a flow of ni-
trogen at a flow rate of 100 ml min−1 for 2 min, purging the
excess solvent.
Exhaled breath analysis
Breath samples were analyzed by TD with comprehensive GC×GC
using flow modulation and coupled to dual FID and MS. Dual de-
tection, with the use of MS and FID, uses the excess flow from the
flow-based modulator suited for volatile analyses, providing both
quantitative and qualitative results.
Analysis by GC×GC was optimized and conducted as described

previously (5) using an Agilent 7890A gas chromatogram, fitted
with a capillary flow technology (CFT) flow modulator and 5799B
mass spectrometer with a high-efficiency electron ionization (EI)
ion source (Agilent Technologies Ltd.). The instrument was
coupled to a TD-100xr TD auto-sampler (Markes International
Ltd.). Samples were analyzed in trays; typically, six per tray along
with a reference mixture containing n-alkanes and aromatics run
every tray, and a reference indoor air VOC mixture run every
four trays. Data were acquired in MassHunter GC-MS Acquisition
B.07.04.2260 (Agilent) and processed (i.e., baseline correction,
alignment, and feature extraction) with a workflow previously de-
veloped and optimized, using GC Image v2.8 suite (GC Image,
LLC.) and Python (14). The sorbent tubes used were Tenax/TA
with Carbograph 1TD (Hydrophobic, Markes International Ltd.)
with matching cold trap. Chromatographic features arising from

analytical artifacts were removed from the peak table. (e.g., ubiqui-
tous siloxanes). For purposes of quality control, samples were ana-
lyzed in accordance with a previously published workflow, and a
detailed sample history, metadata, and experimental data were re-
corded at every stage of the collection and analysis using the
open-access LabPipe toolkit (5, 35).
Chemical speciation of identified breath biomarkers
The chemical nature of volatile metabolites exhaled in breath com-
prises a diverse mixture of non-novel, low-molecular weight com-
pounds. Thus, for most features, chemical identification involved
comparison with an authentic reference compound in accordance
with the MSI Level 1 criteria for metabolite identification outlined
in table S9. Identification was based on a minimum of two indepen-
dent and orthogonal identifiers, including primary and secondary
retention time, mass spectral similarity match, and calculated reten-
tion index. When an authentic reference compound was unavail-
able, chemical identification was compliant with MSI level 2 for
putative annotations. The highly structured chromatographic data
and group-type separation afforded by GC×GC, alongside a well-
characterized chromatographic space from analyzing an extensive
library of authentic compounds, gave increased confidence in the
tentative assignments made. The orthogonal separation of
GC×GC also meant that chemical identification of unknown me-
tabolites could be made, at minimum, in compliance with MSI
level 3 for putative chemical classification.
Sample analysis QC/QA procedures
For purposes of quality control, samples were analyzed in accor-
dance with a previously published workflow, and a detailed
sample history, metadata, and experimental data were recorded at
every stage of the collection and analysis using the open-access
LabPipe toolkit (35). The chromatographic method was optimized
for peak shape, sensitivity, and separation; quality control charts of
the internal standards were used to track the stability of the TD-
GC×GC-FID/MS analysis, and instrument performance was evalu-
ated after the assessment of the variation of retention times, peak
area, and shapes of VOCs in two standard reference mixtures
every six samples (5). Before being conditioned and sent to clinic,
the number of heat cycles and weight for each tube was recorded to
monitor tube age and integrity. For each conditioning cycle, all
tubes were given a batch number, and a batch blank was analyzed
to monitor contamination from the beginning of the sample prep-
aration process. Furthermore, all batches were given an expiry of 2
weeks to ensure routine monitoring.
To minimize the influence of biological and analytical con-

founders (e.g., circadian rhythm and sample stability), potential
effects due to the operator, date of analysis, time of day collected,
storage time before dry purging, sample storage time after dry
purging, and collection volume were assessed and, where necessary,
accounted for in the batch correction. In addition to the routine
analysis of reference standards used to monitor retention shift
and instrument response, the TD-GC×GC analytical system under-
went a programmed heat cycle between each sample to reduce po-
tential issues arising from sample carry-over, and a TD-trap blank
and empty sorbent tube were analyzed every six samples to monitor
the instrument baseline signal.

TDA in the discovery and replication sets
In TDA, the x-y coordinate position of a particular patient within a
TDA cluster cannot be directly compared between discovery and
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replication TDA graphs because the graphs represent a simple two-
dimensional projection of a higher-dimensional structure. Before
performing TDA, each feature was (x + 1) transformed. TDA pa-
rameters were set as number of hypercubes = 20, where the
number of hypercubes refers to the number of overlapping intervals
of the projection.
The distance between data points was measured using the Eu-

clidean distance. The first two linear discriminant functions
(LD1) and (LD2) were used as the projection. Clustering on the
overlapping intervals on the projection was done using agglomera-
tive (bottom up) hierarchical clustering with complete linkage.
TDA was performed using Kepler Mapper 1.4.0 (36) with Python
3.5. Here, we computed the equivalence between topological data
shapes generated using 805 volatile features extracted from the
GC×GC-MS peak data, in both the discovery and replica-
tion cohorts.

Breath biomarker score generation
Feature selection was implemented via Lasso and elastic-net regu-
larized generalized linear models (GLMNET) using the glmnet
package in R. After removing features present in <80% of all
samples from the (x + 1) transformed discovery GC×GC-MS
peak data, a 735-feature matrix was obtained. Amultinomial regres-
sionmodel using LASSO regularization was fitted to the 735-feature
matrix in the discovery set using 10-fold cross-validation, with the
dependent variable in the model being clinical diagnosis (acute
asthma, acute COPD, pneumonia, heart failure, or healthy volun-
teers). The 10-fold cross-validation was repeated 100 times; features
that had a nonzero regression coefficient in more than 80 of the
cross-validation runs were considered as being stable candidate fea-
tures predictive of the outcome (clinical diagnosis), and this result-
ed in 278 stable candidate features. For validation, predictors were
calculated using the Predict function of GLMNET.
A multinomial regression model using elastic net regularization

was fitted to the 278 features with the dependent variable in the
model being clinical diagnosis. Following the chemometric inspec-
tion detailed above and the LASSO and elastic regression analysis, a
final set of 101 exhaled breath volatile compounds was generated.
A multinomial regression model using elastic net regularization

was fitted to the matrix of 101 breath biomarkers with the 10-fold
cross-validation repeated 100 times. The R package glmnetUtils was
used to determine the optimal value of α, the elastic net penalty; the
best value for α was 0 (Ridge regression). Ridge regression with a
logit link function (binary logistic regression) was fitted to the
101 breath relevant features; the dependent variable was “acute
disease,” as a binary outcome. The linear predictor from the combi-
nation of themost stable features was used as a score to predict acute
disease. Linear combinations of the most stable features from the
multinomial regression model fitted to the 101 biomarkers
formed a set of scores for predicting probability of belonging to
the different disease groups (acute asthma, acute COPD, pneumo-
nia, heart failure, or healthy volunteers). Sensitivity analysis for the
interactive elastic net regression approach and justification of the
optimal α values are provided in figs. S11 to S12 and tables S6 to S8.
Figure S13 is a graphical probability distribution of the final 101

exhaled breath features in the GC×GC-MS peak data. The features
largely follow a similar distribution. Some features contained a
mixture of zero and nonzero values, which have arisen owing to
the measurement being below the instrument’s lower limit of

detection. Constant features (all zero values) were removed before
fitting the main model.

Breath biomarker coexpression and feature enrichment
analysis
It was of interest to investigate if within the final set of 101 features,
sets of “coexpressed” features existed, i.e., sets containing features
that are correlated. Considering sets of coexpressed features has
value in terms of reducing the dimensions of a problem and miti-
gating the multiple testing problem through the use of enrichment
score. Coexpression and feature enrichment analysis are described
in the Supplementary Materials section “Coexpression and feature
enrichment analysis.” Metabolite sets were derived on the basis of
Ward hierarchical cluster analysis using the ChemRICHmethod re-
ported in (13), and broader communities were derived from
Louvain cluster analysis to help interpret the correlation graphs
(Supplementary Materials section Coexpression and feature enrich-
ment analysis). Covariation among metabolites lacks evidential
value on its own; therefore, set-level significance was established
using the Kolmogorov-Smirnov test (K-S test) as described using
the ChemRICHmethod (13), Tanimoto coefficients were calculated
to asses intraset chemical similarity usingMetabox (37), and the fre-
quency of occurrence in the published literature and relevant data-
bases considered (KEGG, ChEBI, Human Metabolome Database,
Human Breathomics Database, and microbial VOC database).
Chemical similarity is of interest because compounds derived
from similar pathways may also share common structural features
or chemical groups. This combined data-driven and chemistry-
driven approach has been shown to improve enrichment analysis
(13, 38) and allowed further interpretation of core findings here
(fig. S10).

Statistical procedures
Statistical analysis was performed using R [3.6.1 and 4.0.0, R Core
Team (2019)]. This research used the SPECTRE High-Performance
Computing Facility at the University of Leicester. Baseline data and
figures were presented as means ± SD and median (interquartile
range). Data were analyzed using analysis of variance (ANOVA)
to assess the differences between groups for normally or approxi-
mately normally distributed variables and Kruskal-Wallis for non-
normally distributed variables. Pearson chi-square and Fisher’s
exact were used to assess the differences in categorical variables.
All P values are two-sided and significant at the 0.05 level, unless
reported otherwise.

Supplementary Materials
This PDF file includes:
Materials and Methods
Figs. S1 to S13
Tables S1 To S15

Other Supplementary Material for this
manuscript includes the following:
Data file S1
MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

Ibrahim et al., Sci. Transl. Med. 14, eabl5849 (2022) 16 November 2022 12 of 14

SC I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at C

opyright C
learance C

enter - G
et It N

ow
 on N

ovem
ber 17, 2022

https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/scitranslmed.abl5849


REFERENCES AND NOTES
1. A. Hutchinson, A. Pickering, P. Williams, J. M. Bland, M. J. Johnson, Breathlessness and

presentation to the emergency department: A survey and clinical record review. BMC Pulm.
Med. 17, 53 (2017).

2. M. B. Parshall, R. M. Schwartzstein, L. Adams, R. B. Banzett, H. L. Manning, J. Bourbeau,
P. M. Calverley, A. G. Gift, A. Harver, S. C. Lareau, D. A. Mahler, P. M. Meek, D. E. O’Donnell;
American Thoracic Society Committee on Dyspnea, An official American Thoracic Society
statement: Update on the mechanisms, assessment, and management of dyspnea.
Am. J. Respir. Crit. Care Med. 185, 435–452 (2012).

3. W. Ibrahim, L. Carr, R. Cordell, M. J. Wilde, D. Salman, P. S. Monks, P. Thomas, C. E. Brightling,
S. Siddiqui, N. J. Greening, Breathomics for the clinician: The use of volatile organic com-
pounds in respiratory diseases. Thorax 76, 514–521 (2021).

4. F. N. Schleich, D. Zanella, P. H. Stefanuto, K. Bessonov, A. Smolinska, J. W. Dallinga,
M. Henket, V. Paulus, F. Guissard, S. Graff, C. Moermans, E. F. M. Wouters, K. Van Steen,
F. J. van Schooten, J. F. Focant, R. Louis, Exhaled volatile organic compounds are able to
discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med.
200, 444–453 (2019).

5. M. J. Wilde, R. L. Cordell, D. Salman, B. Zhao, W. Ibrahim, L. Bryant, D. Ruszkiewicz,
A. Singapuri, R. C. Free, E. A. Gaillard, C. Beardsmore, C. L. P. Thomas, C. E. Brightling,
S. Siddiqui, P. S. Monks, Breath analysis by two-dimensional gas chromatography with dual
flame ionisation and mass spectrometric detection - Method optimisation and integration
within a large-scale clinical study. J. Chromatogr. A 1594, 160–172 (2019).

6. K. A. Holden, W. Ibrahim, D. Salman, R. Cordell, T. McNally, B. Patel, R. Phillips,
C. Beardsmore, M. Wilde, L. Bryant, A. Singapuri, P. Monks, C. Brightling, N. Greening,
P. Thomas, S. Siddiqui, E. A. Gaillard, Use of the ReCIVA device in breath sampling of pa-
tients with acute breathlessness: A feasibility study. ERJ Open Res. 6, 00119–02020 (2020).

7. P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan,
J. Carlsson, G. Carlsson, Extracting insights from the shape of complex data using topology.
Sci. Rep. 3, 1236 (2013).

8. J. L. Nielson, J. Paquette, A. W. Liu, C. F. Guandique, C. A. Tovar, T. Inoue, K.-A. Irvine,
J. C. Gensel, J. Kloke, T. C. Petrossian, P. Y. Lum, G. E. Carlsson, G. T. Manley, W. Young,
M. S. Beattie, J. C. Bresnahan, A. R. Ferguson, Topological data analysis for discovery in
preclinical spinal cord injury and traumatic brain injury. Nat. Commun. 6, –8581 (2015).

9. E. Somasundaram, A. Litzler, R. Wadhwa, S. Owen, J. Scott, Persistent homology of tumor CT
scans is associated with survival in lung cancer. Med. Phys. 48, 7043–7051 (2021).

10. S. Siddiqui, A. Shikotra, M. Richardson, E. Doran, D. Choy, A. Bell, C. D. Austin, J. Eastham-
Anderson, B. Hargadon, J. R. Arron, A. Wardlaw, C. E. Brightling, L. G. Heaney, P. Bradding,
Airway pathological heterogeneity in asthma: Visualization of disease microclusters using
topological data analysis. J. Allergy Clin. Immunol. 142, 1457–1468 (2018).

11. M. Nicolau, A. J. Levine, G. Carlsson, Topology based data analysis identifies a subgroup of
breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci.
U.S.A. 108, 7265–7270 (2011).

12. J. Brandsma, V. M. Goss, X. Yang, P. S. Bakke, M. Caruso, P. Chanez, S. E. Dahlén, S. J. Fowler,
I. Horvath, N. Krug, P. Montuschi, M. Sanak, T. Sandström, D. E. Shaw, K. F. Chung, F. Singer,
L. J. Fleming, A. R. Sousa, I. Pandis, A. T. Bansal, P. J. Sterk, R. Djukanović, A. D. Postle, Lipid
phenotyping of lung epithelial lining fluid in healthy human volunteers.Metabolomics 14,
123 (2018).

13. D. K. Barupal, O. Fiehn, Chemical similarity enrichment analysis (ChemRICH) as alternative
to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 14567 (2017).

14. M. J. Wilde, B. Zhao, R. L. Cordell, W. Ibrahim, A. Singapuri, N. J. Greening, C. E. Brightling,
S. Siddiqui, P. S. Monks, R. C. Free, Automating and extending comprehensive two-di-
mensional gas chromatography data processing by interfacing open-source and com-
mercial software. Anal. Chem. 92, 13953–13960 (2020).

15. L. W. Sumner, A. Amberg, D. Barrett, M. H. Beale, R. Beger, C. A. Daykin, T. W. M. Fan, O. Fiehn,
R. Goodacre, J. L. Griffin, T. Hankemeier, N. Hardy, J. Harnly, R. Higashi, J. Kopka, A. N. Lane,
J. C. Lindon, P. Marriott, A. W. Nicholls, M. D. Reily, J. J. Thaden, M. R. Viant, Proposed
minimum reporting standards for chemical analysis Chemical Analysis Working Group
(CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

16. M. Basanta, B. Ibrahim, R. Dockry, D. Douce, M. Morris, D. Singh, A. Woodcock, S. J. Fowler,
Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary
disease: A cross-sectional study. Respir. Res. 13, 72 (2012).

17. S. J. Fowler, M. Basanta-Sanchez, Y. Xu, R. Goodacre, P. M. Dark, Surveillance for lower airway
pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath:
A case-control study. Thorax 70, 320–325 (2015).

18. A. Pizzini, W. Filipiak, J. Wille, C. Ager, H. Wiesenhofer, R. Kubinec, J. Blaško,
C. Tschurtschenthaler, C. A. Mayhew, G. Weiss, R. Bellmann-Weiler, Analysis of volatile
organic compounds in the breath of patients with stable or acute exacerbation of chronic
obstructive pulmonary disease. J. Breath Res. 12, 036002 (2018).

19. R. Peltrini, R. Cordell, W. Ibrahim, M. Wilde, D. Salman, A. Singapuri, B. Hargadon,
C. E. Brightling, C. L. P. Thomas, P. Monks, S. Siddiqui, Volatile organic compounds in a
headspace sampling system and asthmatics sputum samples. J. Breath Res. 15,
027102 (2021).

20. D. Zanella, M. Henket, F. Schleich, T. Dejong, R. Louis, J.-F. Focant, P.-H. Stefanuto, Com-
parison of the effect of chemically and biologically induced inflammation on the volatile
metabolite production of lung epithelial cells by GC×GC-TOFMS. Analyst 145,
5148–5157 (2020).

21. R. Schnabel, R. Fijten, A. Smolinska, J. Dallinga, M.-L. Boumans, E. Stobberingh, A. Boots,
P. Roekaerts, D. Bergmans, F. J. van Schooten, Analysis of volatile organic compounds in
exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 5, 17179 (2015).

22. J. Phan, S. Meinardi, B. Barletta, D. R. Blake, K. Whiteson, Stable isotope profiles reveal active
production of VOCs from human-associated microbes. J. Breath Res. 11, 017101 (2017).

23. D. Salman, M. Eddleston, K. Darnley, W. H. Nailon, D. B. McLaren, A. Hadjithelki,
D. Ruszkiewicz, J. Langejuergen, Y. Alkhalifa, I. Phillips, C. L. P. Thomas, Breath markers for
therapeutic radiation. J. Breath Res. 15, 016004 (2021).

24. A. Sponring, W. Filipiak, T. Mikoviny, C. Ager, J. Schubert, W. Miekisch, A. Amann,
J. Troppmair, Release of volatile organic compounds from the lung cancer cell line NCI-
H2087 in vitro. Anticancer Res. 29, 419–426 (2009).

25. W. Filipiak, A. Sponring, A. Filipiak, C. Ager, J. Schubert, W.Miekisch, A. Amann, J. Troppmair,
TD-GC-MS analysis of volatile metabolites of human lung cancer and normal Cells In vitro.
Cancer Epidemiol. Biomarkers Prev. 19, 182–195 (2010).

26. A. Sponring, W. Filipiak, C. Ager, J. Schubert, W. Miekisch, A. Amann, J. Troppmair, Analysis
of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells.
Cancer Biomark. 7, 153–161 (2010).

27. M. Koureas, P. Kirgou, G. Amoutzias, C. Hadjichristodoulou, K. Gourgoulianis, A. Tsakalof,
Target analysis of volatile organic compounds in exhaled breath for lung cancer discrim-
ination from other pulmonary diseases and healthy persons. Metabolites 10, 317 (2020).

28. M. K. David Ponka, Top differential diagnoses in family medicine Dyspnoea can Fam
physician. Canadian Family Physician, (2008).

29. S. Laribi, G. Keijzers, O. van Meer, S. Klim, J. Motiejunaite, W. S. Kuan, R. Body, P. Jones,
M. Karamercan, S. Craig, V.-P. Harjola, A. Holdgate, A. Golea, C. Graham, F. Verschuren,
J. Capsec, M. Christ, L. Grammatico-Guillon, C. Barletta, L. Garcia-Castrillo, A.-M. Kelly;
AANZDEM and EURODEM study groups, Epidemiology of patients presenting with
dyspnea to emergency departments in Europe and the Asia-Pacific region. Eur. J. Emerg.
Med. 26, 345–349 (2019).

30. W. Ibrahim, M. Wilde, R. Cordell, D. Salman, D. Ruszkiewicz, L. Bryant, M. Richardson,
R. C. Free, B. Zhao, A. Yousuf, C. White, R. Russell, S. Jones, B. Patel, A. Awal, R. Phillips,
G. Fowkes, T. McNally, C. Foxon, H. Bhatt, R. Peltrini, A. Singapuri, B. Hargadon, T. Suzuki,
L. L. Ng, E. Gaillard, C. Beardsmore, K. Ryanna, H. Pandya, T. Coates, P. S. Monks, N. Greening,
C. E. Brightling, P. Thomas, S. Siddiqui, Assessment of breath volatile organic compounds in
acute cardiorespiratory breathlessness: A protocol describing a prospective real-world
observational study. BMJ open 9, e025486 (2019).

31. P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. Irwig, J. G. Lijmer,
D. Moher, D. Rennie, H. C. de Vet, H. Y. Kressel, N. Rifai, R. M. Golub, D. G. Altman, L. Hooft,
D. A. Korevaar, J. F. Cohen; STARD Group, STARD 2015: An updated list of essential items for
reporting diagnostic accuracy studies. BMJ 351, h5527 (2015).

32. G. S. Collins, J. B. Reitsma, D. G. Altman, K. G. Moons, Transparent reporting of a multi-
variable prediction model for individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD
statement. Br. J. Surg. 102, 148–158 (2015).

33. K. G. M. Moons, D. G. Altman, J. B. Reitsma, J. P. A. Ioannidis, P. Macaskill, E. W. Steyerberg,
A. J. Vickers, D. F. Ransohoff, G. S. Collins, Transparent reporting of a multivariable pre-
dictionmodel for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and elaboration.
Ann. Intern. Med. 162, W1–W73 (2015).

34. S. Kitchen, A. Edge, R. Smith, P. Thomas, S. Fowler, S. Siddiqui, M. van der Schee, LATE-
BREAKING ABSTRACT: Breathe free: Open source development of a breath sampler by a
consortium of breath researchers. Eur. Respir. J. 46, (2015).

35. B. Zhao, L. Bryant, R. Cordell, M. Wilde, D. Salman, D. Ruszkiewicz, W. Ibrahim, A. Singapuri,
T. Coats, E. Gaillard, C. Beardsmore, T. Suzuki, L. Ng, N. Greening, P. Thomas, P. Monks,
C. Brightling, S. Siddiqui, R. C. Free, LabPipe: An extensible bioinformatics toolkit to
manage experimental data and metadata. BMC Bioinformatics 21, 556 (2020).

36. H. J. van Veen, N. Saul, D. Eargle, S. W. Mangham, Kepler Mapper: A flexible Python im-
plementation of the Mapper algorithm. Zenodo, (2021).

37. K. Wanichthanarak, S. Fan, D. Grapov, D. K. Barupal, O. Fiehn, Metabox: A toolbox for me-
tabolomic data analysis, interpretation and integrative exploration. PLOS ONE 12,
e0171046 (2017).

38. J. R. Ash, M. A. Kuenemann, D. Rotroff, A. Motsinger-Reif, D. Fourches, Cheminformatics
approach to exploring and modeling trait-associated metabolite profiles. J. Chem. 11,
43 (2019).

Ibrahim et al., Sci. Transl. Med. 14, eabl5849 (2022) 16 November 2022 13 of 14

SC I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at C

opyright C
learance C

enter - G
et It N

ow
 on N

ovem
ber 17, 2022



Acknowledgments: Theworkwas carried out at the University Hospitals of Leicester NHS Trust,
University of Leicester and Loughborough University, supported by the NIHR Leicester
Biomedical Research Center and the NIHR Leicester Clinical Research Facility. We would like to
thank the wider East Midlands Breathomics Pathology Node Consortium. Funding: This
research was funded by theMedical Research Council (MRC), Engineering and Physical Sciences
Research Council (EPSRC) Stratified Medicine Grant for Molecular Pathology Nodes (grant no.
MR/N005880/1), Midlands Asthma and Allergy Research Association (MAARA), and British Lung
Foundation (grant no. BLFPHD17-1). The research was supported by the National Institute for
Health Research (NIHR) Leicester Biomedical Research Center and NIHR, Leicester Clinical
Research Facility, the Leicester Wellcome Trust ISSF (award no. 204801/Z/16/Z), and the MAARA
to whom we are grateful. N.J.G. is funded by an NIHR postdoctoral fellowship (PDF-2017-10-
052). The views expressed are those of the author(s) and not necessarily those of the NHS, the
NIHR, or the Department of Health and Social Care. Author contributions: S.S., C.E.B., N.J.G.,
P.T., and P.S.M. conceived the study, obtained funding, wrote the study protocol, obtained
ethical and MHRA approvals for the study, and coordinated the deployment of analytical
testing methods for breath analysis. W.I. has led planning and recruitment of study participants
as well as taking the lead in writing the manuscript, with support from S.S., R.L.C., N.J.G., M.J.W.,
and M.R. Analytical chemistry team formed of M.J.W and R.L.C led the analytical method
development, the development of all breath sampling and analytical protocols, pre- and
postclinic preparation and analysis of breath samples, and data processing of chemical and
analytical data. M.R., a senior statistician, constructed a statistics and data analysis plan in
conjunctionwith S.S. andM.J.W. Bioinformatics pipeline and electronic CRFs were developed by
R.C.F. and B.Z. All authors, including D.S., A.S., B.H., E.A.G., T.S., L.L.N., and T.C., contributed to the
study design. All authors contributed to and approved the manuscript. Competing interests:
C.E.B. has received consultancy and/or grants paid to his institution from GlaxoSmithKline
(GSK), Astrazeneca (AZ), Boehringer Ingelheim (BI), Novartis, Chiesi, Genentech, Roche, Sanofi,
Regeneron, TEVA Pharmaceuticals, MSD, Mologic, CSL Behring, Gossamer, and 4Dpharma. S.S.
has received funding from the MRC/EPSRC and University of Leicester for the research program
presented in themanuscript. S.S. has engaged in consultancies/received speaker fees related to
asthma, COPD, lung physiology, and eosinophilic airway diseases from the following

companies: Boehringer Ingelheim, Chiesi, Novartis, GSK, AZ, ERT Medical, Owlstone Medical,
CSL Behring, Mundipharma, and Knopp biotech. E.G. reports consultancy work for Boehringer
Ingelheim with money paid to the institution (University of Leicester); investigator-led research
grant from Circassia Group, Gilead Sciences, Chiesi Limited, and Propeller Health; research
collaboration with Medimmune and Adherium (NZ) Limited; and speaker fees from Circassia
Group. The work presented in this paper has been filed by S.S., R.C., M.W., C.E.B., D.S., and P.T. as
part of the U.K. Patent application no. 2110365.0 and International Patent application no. PCT/
GB2022/051858. The rest of the coauthors declare that they have no competing interests. Data
and materials availability: All data associated with this study are available in the main text or
the Supplementary Materials. R and Python codes have been archived in Zenodo (https://
doi.org/10.5281/zenodo.6956451). Access to anonymized core patient-level data used to
generate results in this manuscript are available via request from senior author (S.S.; email: s.
siddiqui@imperial.ac.uk) and are subject to MRC EMBER steering group approval and fully
executed material transfer agreement with the University of Leicester as the study sponsor.
The EMBER Consortium: In addition to EMBER Consortium members who are authors (W.I.,
M.J.W., R.L.C., M.R., D.S., R.C.F., B.Z., A.S., B.H., E.A.G., T.S., L.L.N., T.C., P.T., P.S.M., C.E.B., N.J.G., and
S.S.), the following EMBER Consortiummembers are collaborators who have contributed to the
study design, data analysis, and interpretation: Rachel Munton11, John Le Quesne12, Alison
H. Goodall1, Hitesh C. Pandya1,13, James C. Reynolds4, Martha R. J. Clokie1, Nilesh J. Samani1,
Michael R. Barer1, and Jacqueline A. Shaw1. Affiliations 1 to 10 can be found on the first page of
the paper. 11East Midlands Academic health Science Network, University of Nottingham
Innovation Park, Nottingham NG7 2TU, UK. 12University of Glasgow, Glasgow S12 8QQ, UK.
13AstraZeneca PLC, 2 Kingdom Street, London W2 6BD, UK.

Submitted 27 July 2021
Resubmitted 24 May 2022
Accepted 18 October 2022
Published 16 November 2022
10.1126/scitranslmed.abl5849

Ibrahim et al., Sci. Transl. Med. 14, eabl5849 (2022) 16 November 2022 14 of 14

SC I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at C

opyright C
learance C

enter - G
et It N

ow
 on N

ovem
ber 17, 2022

mailto:s.siddiqui@imperial.ac.uk
mailto:s.siddiqui@imperial.ac.uk


Use of this article is subject to the Terms of service

Science Translational Medicine (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Translational Medicine is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

Visualization of exhaled breath metabolites reveals distinct diagnostic signatures
for acute cardiorespiratory breathlessness
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Take my breath(lessness) away
Breath analysis can be a useful noninvasive way to detect disease. Here, Ibrahim et al. studied the volatile organic
compound (VOC) signatures associated with acute cardiorespiratory diseases in patients presenting breathlessness.
Using two-dimensional gas chromatography and mass spectrometry, the authors found clusters of VOCs associated
with acute heart failure, asthma, chronic obstructive pulmonary disease, and pneumonia. These breath biomarkers
correlated with blood-based biomarkers. An acute disease VOC score based on a 101-biomarker panel was
associated with 2-year all-cause mortality. This study demonstrates how breathomics can help diagnose disease and
further our understanding of metabolic subgroups.
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