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Liver disease such as cirrhosis is known to cause changes in the composition

of volatile organic compounds (VOC) present in patient breath samples.

Previous studies have demonstrated the diagnosis of liver cirrhosis from

these breath samples, but studies are limited to a handful of discrete, well-

characterized compounds. We utilized VOC profiles from breath samples

from 46 individuals, 35 with cirrhosis and 11 healthy controls. A deep-

neural network was optimized to discriminate between healthy controls and

individuals with cirrhosis. A 1D convolutional neural network (CNN) was

accurate in predicting which patients had cirrhosis with an AUC of 0.90 (95%

CI: 0.75, 0.99). Shapley Additive Explanations characterized the presence of

discrete, observable peaks which were implicated in prediction, and the top

peaks (based on the average SHAP profiles on the test dataset) were noted.

CNNs demonstrate the ability to predict the presence of cirrhosis based on a

full volatolomics profile of patient breath samples. SHAP values indicate the

presence of discrete, detectable peaks in the VOC signal.
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Introduction

Cirrhosis of the liver is an advanced stage of disease in which the liver is damaged
from scarring or fibrosis as a result of chronic hepatic injury that can arise from
conditions such as chronic infection with Hepatitis B or C virus, excess alcohol or other
causes (1). Cirrhosis can be classified as compensated or decompensated. A diagnosis
of compensated cirrhosis can be challenging as these patients can be asymptomatic and
may have normal laboratory or imaging findings.

The presence of cirrhosis can be inferred from clinical, laboratory, radiologic, or
elastographic findings, but a liver biopsy represents the gold-standard for diagnosis
(2). Cirrhosis is a preneoplastic condition and a major risk factor for hepatocellular
carcinoma (HCC) which is the sixth most prevalent cancer and third leading cause of
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cancer-related death (3). Once diagnosed, close monitoring for
progression as well as active surveillance for onset of HCC are
essential (4). The onset of complications such as ascites, varices,
and hepatic encephalopathy define decompensated cirrhosis,
and are associated with a higher risk of death (5).

Liver disease has long been recognized to be associated with
detectable changes in a patient’s breath, e.g., fetor hepaticus (6,
7). These result from the presence of diverse range of Volatile
Organic Compounds (VOCs), which may consist of byproducts
of liver metabolism that are released into the bloodstream and
eventually eliminated in the patient’s breath. Importantly, VOCs
have been associated with liver cirrhosis (8) and fibrosis (9).
Thus, a reliable detection of disease-associated VOC or other
metabolites altered by liver damage have the potential for use as
a non-invasive test for the diagnosis and monitoring of cirrhosis.

Global volatolomic analyses can be performed on exhaled
breath samples by separating and detecting individual VOCs.
The approaches for detection of individual VOC are laborious
and time consuming, and often require the use of sophisticated
equipment. A limitation of several prior breath-based biomarker
studies is that they rely on identification of a single VOC
such as limonene (10), which may miss more complex
signatures of disease. The large number and variability of
VOC in exhaled breath have hampered the development of
individual breath-based biomarkers for disease. Recognizing
the inherent variability and diversity of individual VOCs with
biomarker potential, we sought to evaluate approaches for
an unbiased global volatolomic profiles as disease biomarkers.
For our study, global volatolomic profiling was performed
using thermal desorption (TD) with gas chromatography (GC)
based separation coupled with field asymmetric ion mobility
spectrometry (FAIMS) for biomarker discovery.

Analysis of volatolomic profiles has been greatly aided with
the use of artificial intelligence (AI) algorithms such as deep
CNNs which can analyze relationships between all detectable
compounds represented in a breath sample.

This study builds upon existing techniques to diagnose
liver cirrhosis from non-invasive breath samples using an
artificial neural network based on TD-GC-FAIMS signal. We
demonstrate that cirrhosis results in detectable, quantifiable
changes in the volatolomic profile of a patient’s breath.
Furthermore, by utilizing Shapley Additive Explanations, we
demonstrate a set of volatolomic features that correspond to
disease prediction and reflect biomarkers that can be used for
the detection of disease without the need to rely on identification
of individual VOCs.

Materials and methods

Study participants

This prospective study was conducted under a
Mayo Clinic institutional review board (IRB) approved

protocol and conformed to the ethical guidelines of the
Declaration of Helsinki. Informed consent was obtained
from study participants in writing. The trial is registered at
clinicaltrials.gov (NCT04341012).

All participants in this single-center prospective study
were enrolled between September 2019 and March 2020. The
study inclusion criteria were the ability to provide informed
consent and age greater than 18 years. Healthy volunteers were
employees of the hospital who were recruited to participate
through word-of-mouth. Exclusion criteria for healthy controls
included a history of liver disease. Patients were categorized into
groups based on absence or presence of cirrhosis and/or portal
hypertension, and of individual complications as determined
on clinical bases which included histologic, clinical, laboratory,
or imaging features. Participants with non-cirrhotic portal
hypertension were excluded.

Variable definitions

A clinical diagnosis of cirrhosis served as our ground truth
training label and reference standard. Cirrhosis was classified
as stage I, stage II, or stage III. Stage I was defined as
compensated cirrhosis with the absence of varices or other
clinical complications. Stage II (compensated) cirrhosis was
defined as presence of varices but no other complications. The
presence of varices in patients with compensated cirrhosis is a
prognostic factor and indicates a higher risk of decompensation.
Stage III (decompensated) cirrhosis was defined as the presence
of ascites, variceal hemorrhage, or hepatic encephalopathy.
Diagnoses of cirrhosis and presence of clinical complication
were determined independently by two hepatologists.

Sample collection

A flow-chart of sample collection and volatolomic analysis
is shown in Figure 1. Each study participant provided a single
breath sample collected using the ReCIVA breath sampler
(Owlstone Medical, Cambridge, UK) and passed through
thermal desorption tubes to capture VOCs, then separated
using high temperatures and GC and passed onto FAIMS
(Owlstone Medical, Cambridge, UK), a spectrometry device
which separates ions based on size and charge to create a data
matrix that represents a volatolomic profile of the breath sample
(11). FAIMS has been used for VOC detection in many settings
(12–18).

Data collection using this approach (TD-GC-FAIMS) has
been described previously (19). Each study participant provided
a breath sample totaling to 1-L of exhaled air onto Bio-
Monitoring TD tubes (Markes International, South Wales,
United Kingdom). Samples were divided into four technical
replicates which were derived from the same 1 L breath sample
and were collected simultaneously on four separate collection
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FIGURE 1

Flow-chart of sample collection and analysis.

tubes by the collection mask. Samples were collected by a trained
technician (J.T.) after patients had fasted at least 4 h from
food or drink besides water. A subset of 11 samples from 11
individuals (1 sample per individual) had been stored for a
period of time exceeding 6 weeks; these samples were excluded
from the analysis because the effects of long-term cold storage
on breath VOCs are poorly understood (20, 21).

Analysis of volatile organic compounds

The TD-GC-FAIMS data output was preprocessed to
separate the ion intensities from each dispersion field (DF)
setting and subtract out environmental VOCs and background
current fluctuations using air filter field control blanks. All
technical replicates were analyzed independently. The negative
and positive ion intensity mesh matrices at each respective
DF were combined and outer matrix cells with intensity
values below the overall maximum baseline intensity (0.0104
pA) were removed. Compensation field (CF) scan points
were limited to between −3 V and + 3 V. In addition,
30 terminal time resolved values, approximately 40 s at the
end of the GC run, were removed for each DF data matrix.
Data preprocessing was conducted in Matlab version 2019b
(MathWorks, Matick, MA).

For purposes of training deep-learning models, outputs
were additionally processed by dividing by the maximum value.
The signal was downsampled from a 2D to a 1D signal by
taking the maximum value for each row. The final output
of the workflow was a signal with 3,400 rows. Note that
although the signal is sampled into 3,400 discrete values, there
are not 3,400 features present in the signal; a single TD-GC-
FAIMS peak spans several rows, and the dataset is sparse with
many rows having a value of zero. This is analogous to DL
prediction based off electrocardiography signal, where a sample
of 10,000 points will capture 10–12 discrete peak features (22).
During model training, data were randomly augmented with 5%
Gaussian random noise.

Training of the deep learning model

For model evaluation purposes, all samples from 22
individuals (totaling 75 samples), including 17 positive patients
(59 samples) and 5 healthy controls (16 samples) were
randomly selected and set aside as a test dataset; these samples
were excluded from the model development process. The
dataset was split at the patient level such that no patients
had samples in both the training and test dataset. The 24
individuals (82 samples), which included 18 positive patients
(64 samples) and 6 healthy controls (18 samples) were used
for training and validating the neural network model. The
ground truth label was taken to be the presence of cirrhosis as
determined by clinical experts. All results are reported on the
test dataset.

The 24 individuals were randomly divided into four splits
using stratified group fourfold cross-validation; each split
consisted of three analysis folds and one assessment fold where
the analysis folds were used for training and the assessment fold
was used for validating the model. The same cross-validation
(CV) split was used for all iterations of hyperparameter
tuning. Partitioning was done at the patient level such that no
individual had samples in more than a single CV fold. Although
partitioning patients into each fold was random, we attempted
to preserve the distribution of our outcome with stratification,
where at least one healthy patient was represented in each CV
split; this was necessary to ensure proper training of the model.
Figure 2 displays the data partition; Supplementary Table 2
provides additional details.

Model development

Several potential deep learning model architectures were
evaluated to predict presence of cirrhosis. We selected a custom
convolutional neural network (CNN) model for architecture
and hyperparameter-tuning process, which outperformed
several other models in an initial phase of experimentation
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FIGURE 2

Data partition using group fourfold cross-validation (CV) method. Within training data, each split represents one independently trained model.
Models were evaluated on a hold-out test dataset of 22 patients (75 samples).

(including pretrained ResNet and a custom fully connected
deep-neural network).

The CNN model architecture and hyperparameters were
optimized through grid search. Parameters which were
considered included the number of convolutional layers,
number of kernels per layer, number of fully connected
(“dense”) layers at the output end of the model, learning rate,
batch size as well as alternate methods of augmenting the
data to account for data imbalance. Figure 3 displays the
architecture of the best-performing CNN model discovered
through hyperparameter tuning. Supplementary Table 3 lists
all parameters considered (23). Additionally, model architecture
and hyperparameter optimization grid search results were
summarized with analysis (training) and assessment (validation)
accuracy and loss curves in an interactive R markdown
document (R version 4.0.3 with Shiny 1.6.0).

The optimal model architecture and hyperparameter
configuration was selected by assessing the average highest
performing validation accuracy and lowest validation loss across
all four CV splits. The best-performing four individual CNN
models, one for each corresponding CV split, were combined
into an ensemble model by taking the average of model outputs.

Model development with hyperparameter tuning was
performed on the Google Cloud Platform (GCP) and was
accelerated using 1 Nvidia T4 GPU (16GB RAM).

Model evaluation

The primary endpoint of this study was diagnosis of liver
cirrhosis at the patient level, which was achieved by combining

the four individual constituent CNN models from four cross-
validation splits (CV1, CV2, CV3, CV4) (i.e., at the dataset level)
into an “ensemble” prediction by taking the mean probability
across all four models, and then by taking the median value of
this ensemble prediction across the 3–4 technical replicates per
patient. Additionally, to evaluate the reproducibility of model
prediction across multiple technical replicates, the AUC curve
and summary metrics are reported at the sample level.

To investigate the algorithm’s ability to discriminate
cirrhosis patients from healthy controls, the ensemble model’s
predicted probabilities were tabulated by cirrhosis stage and
visualized with boxplots.

Model explainability

Interpretation of AI algorithms is an increasingly important
approach to validate their performance and lend insight to the
modeling process. To aid in the interpretation of the results of
the CNN, we utilized SHapley Additive ExPlanations (SHAP)
(RRID:SCR_021362) to determine which features contribute
to the detection of liver disease (24). SHAP identifies features
which are important in determining the model output by
allocating contributions of the model output across input
parameters. SHAP was implemented in the SHAP package
version 0.39.0 for Python 3.7.8. SHAP values were computed
individually for the four CNN models.

SHAP feature importance plots were summarized on the
training and test datasets for each CV split with “beeswarm”
scatter plots (24). To identify individual compounds from
TD-GC-FAIMS which are most important for detecting the
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FIGURE 3

Diagram of custom CNN model architecture.
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presence of liver disease, the five features with the largest
magnitude (largest absolute SHAP value) were selected per each
instance in the test dataset (75 samples) and were overlayed on
the sample’s VOC signal, creating “heatmaps” which identify
peaks important for predictions. The heatmaps were visualized
with darker red representing the higher number of times
the same peak was detected across four constituent models.
For each patient, the final ensemble predicted probability
was annotated.

Statistical analysis

Clinical demographics and laboratory test results data were
summarized with the median and range for the continuous
variables and with the number and percentage of patients
for the categorical variables. The Wilcoxon rank sum test
for continuous variables and Fisher’s exact test for categorical
variables were used to compare demographics between healthy
controls and cirrhosis patients; Kruskal-Wallis rank sum test
was used to compare laboratory test results between stage I, stage
II, and stage III cirrhosis.

Model performance was assessed for the four individual
cross-validated models as well as the ensemble model at the
sample and patient levels using the area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity,
specificity, positive predictive value, negative predictive value,
and F1 score. A threshold cutoff value of > 0.50 was used to
classify a sample or patient as positive (presence of any stage of
cirrhosis). The exact 95% confidence intervals were computed
for AUC, accuracy, sensitivity, and specificity metrics at the
patient level (Pearson-Klopper method).

To explore patterns in patient subgroups, subgroup analysis
was performed on the final ensemble model with respect to age,
BMI, and sex at the patient level.

Model development and hyperparameter tuning were
performed using Tensorflow version 2.3.0 for Python version
3.7.8. Data summaries, statistical analysis, visualizations, and
model evaluation were performed using R Statistical Software
(version 4.0.3); R Foundation for Statistical Computing,
Vienna, Austria.

Results

Patient demographics

A total of 46 individuals (157 samples) were included in this
study (123 samples from 35 patients with decompensated or
compensated cirrhosis and 34 control samples from 11 healthy
individuals). Among the 46 patients included, median age was
57 (Range: 24–76), 35/46 (76%) had history of liver cirrhosis,
23/46 (50%) were men. A comparison of demographics between

TABLE 1 Comparison of demographics between healthy and
cirrhosis patients.

Median (minimum, maximum)
or No. (%) of patients

Disease
(N = 35)

Healthy
(N = 11)

P-value

Sex (Male) 1.00

Female 17 (48.6%) 6 (54.5%)

Male 18 (51.4%) 5 (45.5%)

Age (years) 61.0 (33.0, 76.0) 45.0 (24.0, 60.0) <0.001

Age group (years) 0.002

(20, 50) 7 (20.0%) 8 (72.7%)

(50, 80) 28 (80.0%) 3 (27.3%)

Body mass index
(kg/m2)

30.2 (20.2, 41.3) 27.6 (21.0, 41.8) 0.42

Body mass index
(categorical)

0.20

Healthy weight
(18.5–24.9)

5 (14.3%) 2 (18.2%)

Overweight
(25.0–29.9)

10 (28.6%) 6 (54.5%)

Obesity (>30.0) 20 (57.1%) 3 (27.3%)

P-values result from a Wilcoxon rank sum test (continuous variables) or Fisher’s exact
test (categorical variables). Bold values denote statistical significance at the p< 0.05 level.

healthy and cirrhosis patients is depicted in Table 1. In
comparison to healthy controls, cirrhosis patients had an older
age at diagnosis (median: 61 vs. 45 years, P = 0.001) and were
more likely to be obese (51.3% vs. 27.3%).

Within the disease cohort, 14 patients (35.9%) had stage
I cirrhosis, 15 patients (38.5%) had stage II cirrhosis, and 10
patients (25.6%) had stage III cirrhosis. Two persons with stage
III cirrhosis had a history of hepatic encephalopathy that was
well controlled and not clinically manifest at time of collection.
A comparison of laboratory test results across cirrhosis stages is
shown in Table 2. As expected by the cirrhosis classifications,
stage III cirrhosis had highest model for end-stage liver disease
(MELD), aspartate aminotransferase to platelet ratio index
(APRI), and Fibrosis-4 index for liver fibrosis (FIB-4) scores
with medians 13, 0.9, 6, respectively. Supplementary Table 1
expands upon Table 2, including additional laboratory test
results.

Model performance at the sample and
patient levels

The CNN model was successful in differentiating breath
samples taken from patients with cirrhosis vs. healthy controls;
four models trained on separate CV splits classified the presence
of cirrhosis with an average AUC of 0.79 at the sample
level (clustering between technical replicates precludes accurate
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TABLE 2 Comparison of characteristics across disease stage for the cirrhosis study population.

Median (minimum, maximum) or No. (%) of patients

Cirrhosis stage
I, compensated

(N = 13)

Cirrhosis stage II,
compensated

(N = 12)

Cirrhosis stage III,
decompensated

(N = 10)

P-value

Ascites 0 (0.0%) 0 (0.0%) 10 (100.0%) <0.001

Varices 0 (0.0%) 12 (100.0%) 8 (80.0%) <0.001

Platelets 185.0 (123.0, 272.0) 92.5 (44.0, 279.0) 83.0 (36.0, 238.0) 0.014

MELD 8.0 (6.0, 20.0) 10.0 (7.0, 19.0) 13.0 (7.0, 28.0) 0.041

APRI 0.4 (0.2, 1.1) 0.8 (0.2, 3.5) 0.9 (0.3, 3.5) 0.16

FIB4 2.4 (0.6, 4.2) 3.7 (1.2, 10.7) 6.0 (1.3, 14.8) 0.013

Etiology 0.13

Non-alcoholic steatohepatitis (NASH) 10 (76.9%) 8 (66.7%) 3 (30.0%)

Alcoholic liver cirrhosis (ALC) 0 (0.0%) 2 (16.7%) 0 (0.0%)

Hepatitis C Virus (HCV) 1 (7.7%) 1 (8.3%) 1 (10.0%)

HCV + ALC 0 (0.0%) 0 (0.0%) 2 (20.0%)

Primary sclerosing cholangitis 2 (PSC 2) 2 (15.4%) 1 (8.3%) 3 (30.0%)

Hemochromatosis 0 (0.0%) 0 (0.0%) 1 (10.0%)

P-values result from a Kruskal-Wallis rank sum test (continuous variables) or Fisher’s exact test (categorical variables). MELD, model for end-stage liver disease; APRI, aspartate
aminotransferase to platelet ratio index; FIB4, Fibrosis-4 index for liver fibrosis. Bold values denote statistical significance at the p < 0.05 level.

estimation of the exact 95% CI at the sample level; these values
are reported for the primary endpoint of patient diagnosis
only). When these models were combined into an ensemble by
averaging prediction probabilities, the AUC was 0.90 as depicted
by Figure 4.

At the patient level, the ensemble model prediction
outperformed the four constituent CV models in detecting
the presence of cirrhosis in patients. Individual models
discriminated between cirrhosis individuals and healthy
controls with an average AUC of 0.80 (range: 0.54, 1.00),
their ensemble achieved an AUC of 0.90 (95% CI: 0.75,
1.00). At a 50% classification threshold, the ensemble model
yielded the following performance metrics: sensitivity of
1.00 (perfect), specificity of 0.40, positive predicted value
of 0.85, negative predicted value of 1.00, and F1 score
of 91.9.

All diagnostic performance measures for the ensemble and
its constituent CV models are reported in Table 3 at both sample
and patient levels.

The subgroup analysis did not reveal any significant
differences in model performance between subgroups (age, BMI,
or sex) indicating that age is not a confounding factor in
classification of breath samples.

Performance based on the cirrhosis
stage

At the 50% threshold, the model correctly classified
100% of patients with stage I, stage II, or stage III

cirrhosis (17/17 patients; 59/59 samples), i.e., the model
achieved perfect sensitivity. The model correctly identified
2/5 healthy individuals (6/16 healthy samples) but
incorrectly classified 3/6 healthy individuals (10/16
healthy samples) as having cirrhosis (Figure 4). Evaluation
of the ensemble model at classifying the presence or
absence of cirrhosis at several stages of cirrhosis is
shown (Figure 5). The model displayed higher confidence
when the patient had stage II or II cirrhosis (median
probabilities > 0.99) than when they had stage I disease
(median probability > 0.76).

Identification of volatile-organic
compound features

The SHAP values which identify peaks in the signal
that contributed most to the prediction are depicted by
the beeswarm summary plots in Figure 6. For each CV
model, we identified the top 10 peaks which selected a total
of 22 unique compounds in the TD-GC-FAIMS signal; 14
compounds (64%) were identified by at least two independently
trained CV models, two compounds were identified by
three CV models, and one compound was identified by
all four CV models. Figure 7 displays an example of
four patients (one from each stage of cirrhosis and one
healthy control) whose VOC profiles’ signal is visualized with
overlaying heatmaps, which depict the five most important
compounds in the classification of liver cirrhosis identified by
each model.
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FIGURE 4

(A) Receiver operating characteristic (ROC) curves of the final models at the sample level. Area under the ROC curve (AUC) is annotated for
each model. The ensemble’s confusion matrix heatmaps at the sample (B) and patient (C) levels summarize the frequency of True Positives (TP),
False Negatives (FN), True Negatives (TN), False Positives (FP).

TABLE 3 Model performance metrics at sample and patient levels at the 0.5 threshold.

AUC
(95% CI)

Accuracy
(95% CI),
fraction

Sensitivity
(95% CI),
fraction

Specificity
(95% CI),
fraction

PPV
(95% CI),
fraction

NPV
(95% CI),
fraction

F1 score

Sample level

Ensemble 0.899 86.7% 65/75 100.0% 59/59 37.5% 6/16 85.5% 59/69 100.0% 6/6 92.2

CV1 0.800 86.7% 65/75 100.0% 59/59 37.5% 6/16 88.7% 55/62 69.2% 9/13 92.2

CV2 0.890 85.3%64/75 93.2% 55/59 56.2% 9/16 88.7% 55/62 69.2% 9/13 90.9

CV3 0.771 85.3% 64/75 98.3% 58/59 37.5% 6/16 85.3% 58/68 85.7% 6/7 91.3

CV4 0.682 81.3%61/75 93.2% 55/59 37.5% 6/16 84.6% 55/65 60.0% 6/10 88.7

Patient level

Ensemble 0.894 (0.751,
1.000)

86.4% (65.1%,
97.1%) 19/22

100.0% (80.5%,
100.0%) 17/17

40.0% (5.3%,
85.3%) 2/5

85.0% (62.1%,
96.8%) 17/20

100.0% (15.8%,
100.0%) 2/2

91.9

CV1 0.824 (0.627,
1.000)

86.4% (65.1%,
97.1%) 19/22

100.0% (80.5%,
100.0%) 17/17

40.0% (5.3%,
85.3%) 2/5

85.0% (62.1%,
96.8%) 17/20

100.0% (15.8%,
100.0%) 2/2

91.9

CV2 0.882 (0.691,
1.000)

81.8% (59.7%,
94.8%) 18/22

88.2% (63.6%,
98.5%) 15/17

60.0% (14.7%,
94.7%) 3/5

88.2% (63.6%,
98.5%) 15/17

60.0% (14.7%,
94.7%) 3/5

88.2

CV3 0.800 (0.486,
1.000)

86.4% (65.1%,
97.1%) 19/22

100.0% (80.5%,
100.0%) 17/17

40.0% (5.3%,
85.3%) 2/5

85.0% (62.1%,
96.8%) 17/20

100.0% (15.8%,
100.0%) 2/2

91.9

CV4 0.682 (0.371,
0.994)

81.8% (59.7%,
94.8%) 18/22

94.1% (71.3%,
99.9%) 16/17

40.0% (5.3%,
85.3%) 2/5

84.2% (60.4%,
96.6%) 16/19

66.7% (9.4%,
99.2%) 2/3

88.9

95% Confidence Intervals are reported at the patient level only, clustering of technical replicates precluded calculation of the exact confidence interval at the sample level. PPV, positive
predictive value; NPV, negative predictive value.
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FIGURE 5

Distribution of the ensemble model’s predicted probabilities for healthy vs. disease classifications stratified by the true stage of cirrhosis. Ground
truth labels of healthy (red) and disease (blue) are displayed. On the y-axis, probability values of model output are displayed. Model performance
is reported at the sample level (A), as well as patient level (B) by aggregating based on median probabilities.

Discussion

This work presents a deep-learning based approach for
detecting liver cirrhosis based on non-invasive breath samples
analyzed with TD-GC-FAIMS. To our knowledge, this is the
first application of deep-neural networks for the prediction of
liver cirrhosis from volatolomic profiles from patient breath
samples (25–28). We observed that CNNs were an effective
technique for analyzing the volatolomic profiles obtained
using TD-GC-FAIMS, and our optimal model displayed an
AUC of 0.90 and an accuracy of 86% at the patient level.
This supports the application of volatolomic analyses using
TD-GC-FAIMS for non-invasive diagnosis of cirrhosis from
breath samples.

Deep learning approach

Several deep-learning approaches were attempted including
transfer-learning of a pretrained ResNet, and a fully connected
deep neural network. Previous experiments done by this group
have demonstrated machine-learning based approaches for the
detection of cirrhosis (19). We observed optimal performance
with a CNN model. This is consistent with extensive literature
that indicates CNNs are an efficient and accurate method of
analyzing sparse signals data; in the medical field, CNNs are
popular model for both image analysis and signals processing
(22, 29–32).

Optimal performance was observed with an ensemble
of four CNNs combined by taking the mean prediction
probability; the ensemble performance was slightly better than
the best performing constituent models, and substantially
better than the average of its four constituents. Combining
several models into an ensemble is an effective technique
for generating consistent predictions and reducing the
impact of overfitting.

Model performance in stage I and
stage II cirrhosis

Our model was effective in predicting the presence of
cirrhosis with an accuracy of 86% at the patient level. The model
displayed a tendency to overdiagnose the presence of cirrhosis;
the ensemble model had a sensitivity of 100% but a specificity of
40% at the patient level.

At the sample level, all mistakes came from differentiating
healthy controls from patients with stage I cirrhosis (e.g.,
the lowest stage of disease, when individuals are often
asymptomatic). This suggests that the model is correctly
identifying hallmarks of advanced cirrhosis with a very high
level of accuracy.

Imbalance in the training dataset likely played a role
in model specificity (only 11/46 individuals included in this
study were healthy controls). Specificity may be modified by
adjusting the prediction cutoff from 0.5 to a higher value,
with the understanding that this may increase the rate of
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FIGURE 6

Beeswarm summary plots on train and test data. This plot combines feature importance and feature effects. Every feature (VOC) is represented
as a row on the y-axis (3,400 total) and SHAP values are on the x-axis (multiple VOC may overlap at a single index). Each dot represents a
Shapley value for a given sample prediction. The color intensity shows the magnitude of importance of each feature.

false negatives. A diagnostic tool with high sensitivity could
be appropriate as an inexpensive, non-invasive screening tool
for cirrhosis detection in an at-risk population, with the
understanding that additional diagnostic tests such as imaging
exams would be required to rule out false positive results in
an initial screen.

Explainable artificial intelligence

The use of SHAP for explaining the predictions of
the CNN model identified several discrete peaks which
were consistently associated with either a positive or
negative prediction. We observed that 14/22 (63%) of
the top peaks detected by the ensemble model were
identified by multiple independent CV models, which
indicates that these features are reproducible between
independently trained models. This supports the reliability
of the CNN approach.

Several specific VOCs are known to be overexpressed
or underexpressed in cirrhotic patients, including
limonene, methanol, and 2-pentanone (8). Data-driven
approaches such as deep neural networks rely on the
entire volatolomic profile measurements, not only a
few discrete peaks, and therefore may be incorporating
VOCs which have not yet been identified, or VOC
constituents which are partially metabolized from known
compounds. Future work has the potential to characterize
previously unknown VOCs which the model indicates are
implicated in cirrhosis.

Limitations

We acknowledge several important limitations to this
study. Although this is a preliminary study in a relatively
modest dataset of 46 patients (157 samples) with unbalanced
groups, several observations strongly support the conclusion
that the model is capturing a true volatolomic signature
which can diagnose disease. Firstly, all four crossvalidated
models demonstrated strong predictive performance on an
independent test dataset of 22 patients that were not seen
at any point in the model training and validation process,
and therefore is likely not the result of overfitting (AUC
0.682–0.882). Secondly, model confidence correlated to cirrhosis
stage (median probabilities > 0.99 for Stage II, Stage III
cirrhosis, median probability > 0.76 for Stage I, healthy)
which is consistent with the clinical observation that it is
more difficult to detect lower grade cirrhosis; furthermore,
subgroup analysis did not indicate any confounding with age
or sex. Thirdly, SHAP analysis identified 64% of features were
identified by at least two independently trained CV models;
the model is consistently identifying several discrete features
in multiple patient samples. Further experimental work is
needed to identify which specific compounds are identified by
these peaks.

Ongoing subject recruitment focuses on the collection of
additional samples, but reporting of findings on the initial
dataset is required to demonstrate proof-of-concept, and
to support the expensive and labor-intensive collection of
additional samples, as well as to justify the recruitment of
additional patient participants.
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FIGURE 7

Patient breath samples with overlayed heatmaps which identify the 5 most important peaks from each CV model (up to 20 peaks total) in the
classification of liver cirrhosis for a healthy control (A), and 3 individuals with stage I (B), stage II (C), and stage III (D) cirrhosis, respectively.
Compounds are represented by indices on the y-axis and VOC signal value is on the x-axis; darker shading indicates the feature was selected by
multiple CV models.
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Conclusion

A deep learning model is capable of detecting the
presence of cirrhosis in volatolomic profiles obtained
from analyses of exhaled breath samples from patients
using TD-GC-FAIMS. Model performance had an AUC
of 0.90 and a sensitivity in detecting disease of 100%
at the patient level. Use of SHAP as a technique for
explainable AI detected a set of unique peaks associated
with both positive and negative prediction; 64% of the top
10 peaks were reproducible across multiple independently
trained models. This technique demonstrates feasibility of
a non-invasive clinical screening exam for diagnosing and
monitoring liver cirrhosis from non-invasive breath samples
without the need for detection and characterization of
individual metabolites.
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