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SUMMARY

Background
The detection of airborne gas phase biomarkers that emanate from biological
samples like urine, breath and faeces may herald a new age of non-invasive diag-
nostics. These biomarkers may reflect status in health and disease and can be
detected by humans and other animals, to some extent, but far more consistently
with instruments. The continued advancement in micro and nanotechnology
has produced a range of compact and sophisticated gas analysis sensors and sen-
sor systems, focussed primarily towards environmental and security applications.
These instruments are now increasingly adapted for use in clinical testing and
with the discovery of new gas volatile compound biomarkers, lead naturally to a
new era of non-invasive diagnostics.

Aim
To review current sensor instruments like the electronic nose (e-nose) and ion
mobility spectroscopy (IMS), existing technology like gas chromatography-mass
spectroscopy (GC-MS) and their application in the detection of gas phase vola-
tile compound biomarkers in medicine – focussing on gastroenterology.

Methods
A systematic search on Medline and Pubmed databases was performed to iden-
tify articles relevant to gas and volatile organic compounds.

Results
E-nose and IMS instruments achieve sensitivities and specificities ranging from
75 to 92% in differentiating between inflammatory bowel disease, bile acid
diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivi-
ties and specificities exceed 90% in differentiating between pulmonary malig-
nancy, pneumonia and obstructive airways disease. These sensitivity levels also
hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is com-
bined with an e-nose.

Conclusions
The accurate reproducible sensing of volatile organic compounds (VOCs) using
portable near-patient devices is a goal within reach for today’s clinicians.
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INTRODUCTION
There is now a gradual paradigm shift with emphasis
towards near-to-patient diagnosis using non-invasive
methods. One important technique is the detection of
airborne gas phase biomarkers emanating from human
biological waste material including urine, sweat, breath
and stool.

Clinicians have been using their own sense of smell as a
diagnostic tool for centuries. Hippocrates himself sug-
gested a patient’s odour could lead to the diagnosis of their
malaise. In his treatise on breath odour and disease, he
described foetor oris and hepaticus. It has also been
reported that he practised pouring human sputum on hot
coals to diagnose Mycobacterium Tuberculosis (TB) on the
basis of the foul odour that was emanated (http://en.wiki-
pedia.org/wiki/Hippocratic_Corpus). Physicians can
detect the sweet smell of diabetic ketoacidosis and the ran-
cid odour of C. difficile stools. For those bequeathed with
the gene to detect the bitter almond smell of cyanide, this
may confer a survival advantage. In 1971, Nobel laureate
Linus Pauling took this further by describing the complex
mixture of volatile compounds (~250 compounds) present
in breath and urine.1 There are also reports that canines
can be trained to detect early stages of disease.2–4 We
believe that animals use their sense of smell to detect gases
and VOCs, and replicating this ability electronically is the
key to unlocking advances in ex vivo testing.

The available technology has often been ahead of the
clinical need, but greater awareness and collaboration with
bioengineering have brought the two disciplines much clo-
ser. Markers that hold the most promise for this type of
technology (and gaining credence) are associated with the
detection of gas phase molecules present at room tempera-
ture. There is now an emerging portfolio of evidence in
the literature citing the ability to detect diseases using vari-
ous aroma scanning devices. These devices have been used
to detect lung and skin cancers, wound infections, some
ENT diseases, bacterial infections including MRSA and C.
difficille, metabolic disorders, hypoxic states like asthma,
COPD and bronchitis and even recreational drug use.5, 6

This review assesses this rapidly developing technol-
ogy with focus on its application in gastroenterology and
makes predictions as to where the future lies with
devices that bring non-invasive diagnosis closer to the
patient.

Analytical instruments in gas phase volatile
compound detection
There are several available analytical methods that can
be used to detect volatile organic compounds (VOCs),

with gas chromatography (GC)/Mass Spectrometry (MS)
being considered the gold standard. Although efficient at
undertaking this role, the cost, bulkiness and operating
overhead make them an unlikely routine diagnostic tool.
Whilst miniaturised GCs have been under development
from the mid 1970s, they have yet to find commercial
success. This may be due to the combined difficulty in
creating a stable coating and poor compatibility with
existing GC equipment. Due to the biological origin of
the VOCs, it is likely that they will contain a variable
mix of compounds with different molecular weights. Gas
phase biomarker molecules exist in small quantities and
differing ratios, thus requiring highly adaptive instru-
ments to rapidly capture and detect these biomarkers.
One such instrument that can achieve this requirement,
practical and economically viable is the ‘electronic nose’.

The term electronic nose is broad – referring to a
method rather than specific sensor technology. Such
instruments do not detect every single chemical compo-
nent but, like the human olfactory system, attempt to
identify patterns in an array of nonspecific sensors. A
traditional electronic nose is formed of an array of 8–32
different chemical sensors. These sensors are broadly
tuned to different chemical groups including alcohols,
ketones and low pressure gases. When the air above the
biological sample (the ‘headspace’) is injected into the
e-nose, each sensor response is unique within the array.
A feature of this response, for example the maximum
change, is then extracted and used to train the instru-
ment using a pattern recognition engine (usually some
form of neural network). Thus, it is possible to teach the
instrument to recognise a range of different conditions.
If the instrument is presented with a sample from the
same disease group, the response pattern from the sen-
sors is repeated and the instrument is able to identify
the condition – as shown in Figure 1.

Electronic noses have been created using a range of
technologies including carbon black composite polymers
(Cyrano 320; Sensigent, Milwaukee, WI, USA), semi-con-
ducting metal oxide chemoresistors (Fox 4000/3000/2000
AlphaMOS; Toulouse, France; PEN3), Airsense Analytical,
(Schwerin, Germany), E-nose (E-nose company, Eveleigh,
NSW, Australia), polymer-coated quartz crystal microbal-
ances (MOSES II; GSG-Analytical, Brushal, Germany),
optical dyes (BAI; Metabolomix, West Palm Beach, FL,
USA), Gas FETs (NST3320; Applied Sensors, Reutlingen,
Germany) and electrochemical sensors5 (Tetra:3; Crow-
con, Abingdon, UK).

However, more recent technologies have also now
been classified under ‘electronic nose’ category. These
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include Ion mobility spectrometry (IMS) (Lonestar, Owl-
stone, Cambridge, UK); BreathSpec (GAS, Dortmund,
Germany), GCs employing gas sensors as the detector
(zNose; Electronic Sensor Technology, Newbury Park,
CA, USA) and optical gas spectrometer instruments
(CT3000; Cascade Technologies, Stirling, UK). All of
these instruments can be configured to give rapid diag-
nosis (under 60 s), though IMS generally offers the high-
est sensitivity of these newer systems. Field asymmetric
ion mobility spectroscopy (FAIMS); a type of IMS has
shown promise within various medical domains due to
its increased sensitivity.7, 8 FAIMS is able to track the
mobility of single ions as it traverses an electric field –

making it highly sensitive and thus applicable in detect-
ing minute changes in the make-up of VOCs.

Recently selected ion flow tube mass spectrometry
(SIFT-MS) that combines chemical ionisation and mass
spectroscopy has been used to detect gas phase volatile
compound biomarkers (Voice200; Syft Technologies,
Christchurch, New Zealand). It allows rapid quantifica-
tion of trace volatile compounds even when there is an
abundance of atmospheric gases. The specific ion prod-
ucts are detected downstream by quadruple mass spec-
trometer and an ion-counting system.9 Table 1 lists the
current gas analysis instruments; some of which are
already in use within the medical domain, with typical
cost per instrument.

Animals specifically canines have been trained to
detect malignancies in the breast, bladder and colon by
smelling biological fluids.2–4 However, this process takes
a considerable period of training and expense. Mammals
also undergo a phenomenon known as olfactory fatigue
in which the olfactory bulb becomes saturated with

odour molecules rendering it ineffective.10 Electronic
nose instruments are more consistent and reproducible,
and although the sensors’ sensitivity can drift, they can
be re-calibrated.

Gas phase volatile compound biomarker detection in
gastroenterology
Gas phase volatile compound biomarkers originate
within a biological system and can be assessed using a
number of methods. A plausible source of these biomar-
kers is the human colon.

Health and disease. Fermentation of undigested foods
in the colon by its resident bacteria is thought to affect
not only colonic health but also influences metabolic
health.11 The anatomical structure of the colon is suited
to act as a fermenting chamber with the gaseous mole-
cules emitted having direct effects on colonocytes as well
as gut neural and metabolic effects. This complex system
referred to as the ‘fermentome’ can be altered through
dietary modification, which will have a direct impact on
colonic as well as metabolic health and disease.12 The
gases emitted may play a role in bacterial chemical sig-
nalling within the colon, sometimes referred to as quo-
rum sensing13 but importantly, could also serve as gas
phase biomarkers.

Perturbance of the host gut microbiota is known to
influence colonic and metabolic health. Assessing resi-
dent bacterial populations in the colon requires pro-
longed culture or expensive genomic sequencing; both
are often unsuccessful. Clearly, this is not practical for
daily clinical practice. Studies have reported changes in
the fermentome produced by patients undergoing
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Figure 1 | Modelling of electronic nose based on human olfactory system. Odour molecules from a biological sample
are presented to the sensor array and a specific response pattern is generated. This signal is then processed through
artificial neural networks to create a pattern recognition output (based on a training set). The output thus provides a
probability of the most likely diagnosis based on smell.
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complete vs. partial bowel cleansing using urine samples.
Electronic nose technology was able to distinguish
between individuals who had complete compared with
partial bowel preparation. Moreover in a subset of indi-
viduals, electronic nose was able to identify evolving bac-
terial re-colonisation over time – offering a practical
non-invasive approach to track bacterial dysbiosis follow-
ing iatrogenic or idiopathic perturbation.14

Breath analysis offers an attractive non-invasive
option, but a major confounder is trying to detect and
quantify tiny amounts of gases/VOCs in the presence of
atmospheric gases – the latter often existing in larger
quantities and molecular weights. This shortcoming can
be circumvented with the use of SIFT-MS technology,
which is highly sensitive and able to separate ionised
particles even in the presence of other gases present at
the time of sampling.9 Aerosolised particles in breath
arise from different sources, and have to contend with
metabolites from oral microflora. Additionally inhaled
volatile compounds can undergo endogenous degrada-
tion, thus altering the ratio between inhaled and exhaled
gas concentrations. The latter is important to consider,
especially during analysis of acute metabolic condi-
tions.15 VOC breath analysis (breathomics) does offer

the potential to go beyond just diagnostics, but also as
biomarkers to monitor oxidative stress and inflammation
– e.g. in lung cancer with good results.

Inflammatory bowel disease. The ability to detect gas
phase biomarker signatures in the breath of patients with
inflammatory bowel disease (IBD) was a significant
advance in the 1990s. In a pilot study, alkanes, ethane
and pentane were the main chemical groups identified in
patients with ulcerative colitis (UC).16–18 Similar findings
were observed using gas chromatography-time-of-flight-
mass spectroscopy (GC-TOF-MS). Here, distinction was
made between IBD and controls with sensitivities of
>90% using six discriminatory VOCs (not specified)
within breath. However, sensitivities dropped to 80%
when attempting to distinguish active IBD from those in
remission.19 More recently, using different technology
such as SIFT-MS, improved distinction using breath was
made between Crohn’s disease and active UC patients.20

Systemic pentane production was predominant and is
thought to reflect cellular lipid peroxidation – a conse-
quence of mucosal inflammation.

Gut microbiota and altered mucosal permeability
have been implicated in the pathogenesis of IBD. The

Table 1 | Table of gas analysis instruments describing its advantages and limitations including practical applicability
and cost

Technique
Breadth of
analysis Sensitivity Specificity Accuracy Speed

User skill
level

Consumable
cost per item Maintenance

Sample
cost

Est.
Cost (£)

Gas analyzer
(e.g. nitric)

Low Low Medium Medium Real-time Low Low Low Low <10k

Electronic
nose

Medium High Medium High Real-time Low Low Low Low <40k

Ion mobility
spectrometer

Medium Medium/
High*

Medium/
High

High Real-time Medium/
High

Low Medium Low <50k

GC-MS High Very high† Very High High Off-line High Medium High Medium >150k
PCR-MS Medium High High High Real-time High Low Medium Low >200k
SIFT-MS High High High High Real-time Medium/

High
Low Medium Low >200k

FAIMS High High High High Real-time High Low Medium Low <50k
Electronic Nose subgroups
Metal oxide Medium High Medium Medium Real-time Low Low Low Low <40k
Optical Medium Medium Medium High Real-time Low Low Low Low <40k
Polymer Medium Medium Low Low Real-time Low Low Low Low <40k
GC-Based High/

Medium
Medium/
High

High Medium Real-time Medium Medium Medium Medium <40k

Electrochemical Low High High High Real-time Low Low Low Low <40k
Quartz Crystal Medium Medium Medium High Real-time Medium Low Low Low <40k

GC-MS, gas chromatography mass spectroscopy; MS, mass spectrometry; SIFT-MS, selected ion flow tube mass spectrometry;
FAIMS, field asymmetric ion mobility spectroscopy.

* Depends upon type of IMS technology deployed. Drift tubes are medium, FAIMS high.

† Pre-concentration required.
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organisms can ferment nonstarch polysaccharides in the
colon producing a fermentation signature. These consti-
tute groups of molecules that can reach the systemic cir-
culation and then urine by passing through an impaired
gut mucosal barrier. Using urine samples from 62
patients with Crohn’s disease and UC, the electronic
nose was able to separate those with IBD and controls
and reclassify them with 75% sensitivity and specificity;
p < 0.001.21 The instrument could also distinguish
between active disease and those in remission. In another
study of faecal volatiles using standard thermal desorp-
tion (TD) GC-MS, investigators were able to separate
those with IBD and controls which included healthy sub-
jects and patients with irritable bowel syndrome.22

Patients with Crohn’s disease had evidence of increased
concentrations of ester and derivatives of short-chain
fatty acids. Following treatment, these volatile com-
pounds approached levels seen in healthy controls. These
studies suggest that the fermentome in IBD is dis-
ease-specific when compared to healthy subjects possibly
reflecting alteration in bacterial diversity when moving
from health to disease. The fermentome signature could
also be tracked non-invasively as the disease enters
remission (fermentonomics).

Bile acid diarrhoea. In a study of 110 urine samples
from patients with bile acid diarrhoea, an electronic nose
was able to separate those with bile acid malabsorption
from ulcerative colitis and healthy controls with 85%
sensitivity.23 2-Propanol and acetamide were unique
chemicals found in the urine of patients with bile acid
diarrhoea and not in controls.

Gastrointestinal cancer. In patients with pelvic cancer
using stool samples, the electronic nose detected those
that developed severe gastrointestinal-related toxicity fol-
lowing radiotherapy and also importantly, could predict
those patients who were more likely to develop severe
gut-related toxicity.24 The sensor response from the
e-nose suggested the presence of hydrogen sulphide pro-
duction which could indicate the presence of hydro-
gen-producing bacteria, namely firmicutes. It is plausible
that the dominance of certain radiation-resistant bacteria,
e.g. archaebacteria may determine the risk of toxicity fol-
lowing radiotherapy. In a further pilot series of 47
patients, using urine samples, the electronic nose was
able to separate those with colon cancer from healthy
controls and those with UC (sensitivity of 87%;
p < 0.001).25 Recent studies analysing both breath and
faecal material have been used successfully to distinguish

between colon cancer and healthy individuals.26, 27 In
the study of breath analysis, conventional GC-MS was
utilised with a sensitivity and specificity of 85%. The
study assessing faecal volatiles used an electronic nose
Cyrano A320 which had a sensitivity and specificity of
92%.

Similarly, assessment of volatile compounds from gas-
tric fluid content has been shown to distinguish gastric
cancer from healthy controls using conventional GC-MS
as well as SIFT-MS.28, 29 The gaseous markers identified
included mainly alcohols, aldehydes and ketones.

Coeliac disease. selected ion flow tube mass spectrome-
try technology has been used to separate patients with
coeliac disease from healthy controls based on breath
volatiles. This was based on the identification of alcohol
fermentation products thought to predominate as a
result of mal-fermentation of carbohydrates in these
patients – no difference was found as only alcohol
by-products were sought.30 When solid phase
micro-extraction (SPME) coupled with conventional
GC-MS was used in children (aged 6–12 years) with coe-
liac disease, less volatile compounds were detected in fae-
cal samples compared with healthy controls consisting of
patients’ siblings or treated coeliac disease. Correspond-
ing faecal microbiota analysed by PCR-denaturing gradi-
ent gel electrophoresis in children with coeliac disease
showed reduced diversity, especially for the Lactobacilli
and Bifidobacterium species.31 The latter is thought to
influence host immunity which may contribute in part
to activation of the innate immune system.

Liver disease. In liver disease, detection of gas phase bio-
markers within breath has been used to separate those
with hepatocellular carcinoma32, 33 and non-alcohol fatty
liver disease.34 Liver disease results in metabolic derange-
ment with production of endogenous compounds which
concentrate in the blood. Some of these are volatiles
which can be measured in urine and breath. The imbal-
ance of gut microbiota noted in liver cirrhosis35 could
account for the differential colonic fermentation profiles
which can be detected as volatile compounds. Dimethyl-
sulphide (DMS) is a volatile sulphur compound that is
thought to be responsible for the odour of foetor hepati-
cus.36 DMS is formed by anaerobic bacterial breakdown
of sulphur-containing amino acids. It is a stable molecule
that is present in biological tissues including blood, urine
and breath.37

In a study using SPME coupled with conventional
GC, increases in ester compounds were noted in faeces
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of those with non-alcohol fatty liver disease (NAFLD);
about a third of the volatile compounds were also
detected in healthy subjects. The remaining two-thirds
of the volatile variation in NAFLD corresponded
with an increase in Lachnospiraceae and Lactobacilli
genus.34

Gut infections. The need for rapid diagnosis of infec-
tions compared with prolonged microbiological culture
has resulted in the exploration of volatile organic
compounds to provide a rapid diagnosis. Using SPME
GC-MS on faecal samples from patients with C. diffi-
cile-associated diarrhoea, an abundance of furan metab-
olites with corresponding reduction in methylindole was
found. The latter is thought to be due to the disruption
of nosocomial E. coli resulting from broad-spectrum
antibiotic usage. Long-chain fatty acids such as ethyl
dodecanoate were noted in those with rotavirus infec-
tions whilst the presence of ammonia without ethyl
dodecanoate suggested other enteric viruses and the
absence of hydrocarbons and terpenes indicated Cam-
pylobacter sp. infection.38 In healthy individuals, almost
half of volatile compounds from faeces (mainly deriva-
tives of short-chain fatty acids) are shared between
individuals and are relatively stable over a period of at
least 2 weeks – with little alteration as a result of
diet.39

In pilot studies, patients with Helicobacter pylori (HP)
infection could be separated from controls by measuring
breath volatiles.40 Discrimination of HP from other bac-
terial gastro-oesophageal isolates was also possible using
an electronic nose.41 The predominant volatile com-
pounds were isobutene, 2-butanone and ethyl acetate.
Others have reported detection of hydrogen cyanide and
hydrogen nitrate in those with HP-associated gastritis
compared with controls.42

Gas phase biomarker detection in other diseases
Lung disease. Previous research since the 1990s, utilising
GC-MS, has shown detectable gas phase markers in
exhaled breath in different disease states. The use of the
electronic nose in diagnosing respiratory disease was
therefore an obvious starting point.43–55 Several studies
have examined the use of an electronic nose in respira-
tory infection, both in a clinical setting and in in vitro
assessments. In vitro studies show that the odour
contained in the headspace of different microbial cul-
tures can be detected by the electronic nose, and can be
differentiated from controls.56–61 When bacterial culture
is taken as the gold standard, electronic nose has a

sensitivity and specificity of over 90% with potential for
rapid, organism-specific diagnosis.

The electronic nose has also been shown to have a
predictive value of over 90% in differentiating patients
with obstructive airways disease52–55 from those with
lung cancer.49, 62 Thus, it could be used as a screening
tool in high-risk groups. There is a growing interest in
the detection of pulmonary tuberculosis in breath using
electronic nose-based technology with reported sensitivi-
ties and specificities of 71% and 72% respectively.63–65

Other cancers. The expansion of the electronic nose to
detect cancers in other organs using breath volatiles is
growing with evidence that the electronic nose can dif-
ferentiate between cancer and normal cell lines derived
from prostate and ovaries and also from brain and skin
cancer tissues.66–69 In a pilot study, bladder cancer could
also be correctly re-classified with >90% accuracy using
GC and a single metal oxide detector from urine
samples.70

Diabetes. The dysregulation of lipids and glucose with
ketone formation is the premise for VOC detection in
patients with diabetes. Aerosolised glucose and aromatic
compounds like isoprene have been shown to distin-
guish between type 2 diabetes and healthy controls with
a sensitivity of 90% and specificity of 92%.71 Interest-
ingly, gas volatile marker correlation with blood was
better in type 1 compared with type 2 diabetes.72 Never-
theless, gas phase markers as a screening tool for detec-
tion of metabolic disorders including hyperglycaemia
and hyperlipidaemia offer great potential, especially in
primary care.

Halitosis. Halitosis can be attributed to intraoral and ex-
traoral causes. Determination of the predominant com-
pound can provide clues as to its aetiology. Acetones
and other ketones are linked with diabetes mellitus and
weight reduction, dimethylsulphide, C2-C5 aliphatic and
isovaleric acid with liver diseases, whilst hydrogen sul-
phide and methyl mercaptan with oral malodour.
Patients with oropharyngeal carcinoma are thought to
produce a particular breath odour due to branched chain
organic acids (C2–C8 compounds), which can be detected
by GC-MS.42

Not surprisingly, VOCs measured by GC-MS from
oral microbial cultures show a range of volatile com-
pounds within the headspace. Specifically, anaerobic spe-
cies producing hydrogen sulphide, methyl mercaptan
and indoles give rise to malodour. Interestingly, volatiles
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produced from the tongue biofilm can vary according to
the pH of the growth media it is maintained. For exam-
ple, increasing the pH from 6 to 8 enables detection of
Dimethyl di and trisulphide and other volatile sulphur
compounds.73 The latter compounds have also been pre-
viously reported in faeces.74, 75 Of note is the overlap of
chemicals reported in breath of patients with liver dis-
ease.

Sniffing the future – electronic hand-helds
It is our belief that the ultimate gas phase biomarker
detection will be achieved through closely mimicking the
biological olfactory system. This can be achieved by
combining large numbers of diverse micro-sensor arrays.
The human nose has ~350–400 different types of func-
tional olfactory receptors with each containing millions
of neurones. Each sample will be offered to the sensors
in a carefully controlled system mimicking the human
nose which filters, controls the temperature and flow rate
to the olfactory bulb.76–78 The olfactory system also has
a ‘nasal chromatograph’ that aids in separating chemical
components before contact with olfactory receptors –

coupled with advanced biological data processing of the
complex spatial and temporal responses.76–80 This com-
bined approach could be the future basis of new cut-
ting-edge instruments.

We are already seeing the first portable/hand-held
medical diagnostic devices near to commercialisation
for gastroenterological diseases, including tuberculosis

(Aeonose; The Electronic Nose Company, Zutphen,
Netherlands), Clostridium difficile (Odoreader; University
of the West of England, Bristol, UK) and bacterial over-
growth (Gastrocheck; Bedfont Scientific, Maidstone, UK).
Recent advances in the field of nanomaterials for chemi-
cal sensing such as graphene, carbon nanotubes and
nanostructured materials81–83 will expand the field of
devices available (Figures 2 and 3).

There are many efforts in developing ‘nose-on-a-chip’
solutions, micro-electronic devices that combine the
sensor and sensing material, electronic interface and the
decision-making process onto a silicon chip that could
eventually be integrated into a mobile/portable device.84–86

An example is the latest Samsung S4 mobile phone which
already has an integrated temperature and humidity sen-
sor produced by Sensirion (AG, Wald, Switzerland) and is
only 2 mm 9 2 mm in size (http://www.chipworks.com/
en/technical-competitive-analysis/resources/blog/inside-the-
samsung-galaxy-s4/). Such efforts demonstrate the desire
to make instruments that closely mimic the biological
olfactory system, which, we believe, will ultimately allow
sniffing technology at point of care.

CONCLUSIONS
Gas phase volatile compound biomarkers offer the
potential for future diagnostics in gastroenterology/medi-
cine. It provides a distinct advantage but equally requires
specialised sensitive instrumentation to capture and ana-
lyse samples. The electronic nose stands up to the chal-
lenge as evidence mounts in favour of its support. The
combined efforts of engineers, chemists and clinicians
together with advancing technology will enable smaller

Figure 2 | A new generation electronic nose – WOLF
system (Warwick OLFaction electronic nose; Current
version WOLF 4.1). This unit houses a combination of
modern nano-material sensors with specialised sample
capture, data extraction and analytical software.

Figure 3 | Example of a smaller, hand-held electronic
nose device version; 2.1 prototype in development for
breath capture of VOCs.
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hand-held VOC sensing devices that can be used in
point of care, thus bringing closer the reality of
non-invasive diagnostic medicine.
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