Determination of N-methylpyrrolidinone in cefepime hydrochloride using field asymmetric waveform ion mobility spectrometry combined with mass spectrometry

Colin S Creaser*, Robert W Smith†, Lisa Cox*, James C Reynolds*, Mark Powell*
Centre for Analytical Science, Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU; Quay Pharmaceuticals Ltd, Deeside Industrial Park, Flintshire, CH5 2NS. c.s.creaser@lboro.ac.uk

Introduction and Background

- Cefepime is a cephalosporin antibiotic with low toxicity and broad range activity.
- N-methylpyrrolidinone (NMP),1,2 may be present as an impurity in Cefepime and must not exceed 0.3 %, because of its toxicity.3
- The determination of NMP in Cefepime presents a challenge because, (i) Cefepime rapidly degrades to form NMP in aqueous solution during the analysis, particularly outside the pH range 4-6, and above 4 °C; and (ii) the protonated Cefepime generated by ESI readily fragments in the mass spectrometer interface to form protonated NMP by 'in-source' collision-induced dissociation (in-source CID).
- The determination of NMP in Cefepime using FAIMS-MS is a suitable method, and the quantitative determination of NMP in Cefepime was demonstrated in the present study.

Instrumentation and Experimental

Instrumentation:
- A chip-based prototype FAIMS device (Owlistone Ltd.) was inserted in front of the capillary inlet of an orthogonal acceleration TOF MS (Agilent Technologies 6230 TOF) fitted with a Jet Stream ESI source (Figure 2).
- The FAIMS device has parallel electrode pairs with a 100 μm electrode gap and 700 μm path length. Devices with trench lengths of 78.1 mm and 97.0 mm were used; the latter for the quantitative studies.

Experimental:
- Solution of NMP and Cefepime prepared in methanol/water (50:50) + 0.1% formic acid were directly infused (10 μL/min) into the ESI source, which was operated in positive ion mode
- ESI-FAIMS-MS conditions: sheath and drying gas flows, 9 and 7 L/min; sheath and drying gas temperatures, 250°C and 150°C; nebuliser pressure, 35 psi; spray shield, 2500 V; transfer capillary voltage and nozzle voltage, 3000 V and 2000 V, respectively.
- Dispersion fields (DF) of 180 - 300 Td were used for optimising separation and DF of 180 Td used for quantitative studies.
- The 'fragmentor' voltage applied in the TOF inlet was varied between 75 and 375 V (25 V steps), but set to 200 V for quantification measurements. The MS acquisition scan rate was 16 scans/s for FAIMS scanning and 1 scan/s for quantification with static FAIMS.

Results: In-source CID Fragmentation Studies

- The effect of fragmentor voltage on the intensities of the NMP (m/z 86.07) and cefepime (m/z 481.13) ions was investigated, to determine the extent of cefepime fragmentation by in-source CID.
- NMP and cefepime were infused separately and the fragmentor voltage varied in the range 75-375 V (Figure 3).
- The maximum response for transmission of the NMP ion was at a fragmentor voltage of 200 V (Figure 3a). However, infusion of a Cefepime standard also resulted in a response for NMP as a result of in-source CID at all fragmentor voltages in the range 75-375 V.
- The NMP response in the Cefepime sample directly infused into the ESI source arises from a combination of NMP in the Cefepime sample and in-source CID, preventing the direct determination of NMP.

Results: ESI-FAIMS-MS of NMP and Cefepime

- Figure 4 shows the mass-selected ion responses for Cefepime (m/z 481) and NMP (m/z 86) in the FAIMS compensation field (CF) spectrum of a solution of Cefepime containing 0.1 % (w/w) NMP.
- The NMP selected ion response (blue trace) shows two peaks, at CF = 0 Td, arising from NMP in the Cefepime sample, and at CF 0.7 Td, arising from the transmission of intact Cefepime, followed by in-source CID to form NMP.
- Cefepime and NMP were resolved by FAIMS at a DF of 180 Td (Figure 4, insert).
- Singly and doubly protonated cefepime are the main peaks observed in the mass spectrum of a Cefepime solution without FAIMS separation (Figure 5a).
- The NMP ion is the base peak in the mass spectrum obtained with FAIMS selection (DF 180 Td, CF 0 Td) (Figure 5b).

Results: Determination of NMP in Cefepime by ESI-FAIMS-MS

- The FAIMS was operated in 'static' mode (CF 0 Td, DF 180 Td), so that NMP was selectively transmitted through the device for the quantification of NMP in Cefepime. The quantitative performance of direct ESI-FAIMS-MS is summarised in Table 1.
- The LOQ was 0.013 μg/mL, equivalent to 0.0227 % (w/w) in the Cefepime sample, which is well below the 0.3 % threshold.
- Good linearity and precision were observed for NMP making direct infusion ESI-FAIMS-MS suitable for the determination of NMP in Cefepime.

Conclusions

- Solution degradation and in-source CID of Cefepime to NMP presents an analytical challenge for the determination of NMP in Cefepime.
- The FAIMS separation of NMP and Cefepime allows NMP in Cefepime to be distinguished from NMP ions generated by in-source CID.
- Direct infusion of a cefepime solution using ESI-FAIMS-MS is a rapid, direct ambient ionisation method for quantifying NMP in Cefepime.
- Quantitative determination by ESI-FAIMS-MS was found to be sensitive and precise, with an LOQ well below the required 0.3 % threshold.

Acknowledgements

We thank Owlistone Ltd and Agilent Technologies for financial and technical support and for the provision of instrumentation, and Quay Pharmaceuticals for providing samples.

References