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A B S T R A C T   

Gastric cancer (GC) is one of the most fatal cancers, characterized by non-specific early symptoms and difficulty 
in detection. However, there are no valid non-invasive screening tools available for GC. Here we establish a non- 
invasive method that employs exhaled volatolomics and ensemble learning to detect GC. We developed a 
comprehensive mass spectrometry-based procedure and determined of a wide range of volatolomics from 314 
breath samples. The discovery, identification and verification research screened a biomarker panel to distinguish 
GC from controls. This panel has achieved 0.90 (0.87–0.94, 95%CI) accuracy, with an area under curve (AUC) of 
0.92 (0.89–0.94, 95%CI) in discovery cohort and 0.88 (0.83–0.91, 95%CI) accuracy with an AUC of 0.91 
(0.87–0.93, 95%CI) in replication cohort, which outperformed traditional serum markers. Single-cell sequencing 
and gene set enrichment analysis revealed that these exhaled markers originated from aldehyde oxidation and 
pyruvate metabolism. Our approach advances the design of exhaled analysis for GC detection and holds promise 
as a non-invasive method to the clinic.   

1. Introduction 

Gastric cancer (GC) is one of the most fatal cancers around the world, 
along with a five-year survival rate of less than 30 % [1]. The primary 
reason is the lack of characteristic symptoms in early-stage GC, leading 
to many patients to be diagnosed at advanced stage [2]. Early detection 
and treatment of GC can elevate the five-year survival rate to an 
impressive 90% [3]. However, current detection methods, such as 
gastroscopy, pathology, and radiology examinations are not only costly 
but also carry risks like bleeding and perforation [4]. Therefore, there is 
an urgent clinical need for a precise and non-invasive tool for the early 
detection of GC. 

Exhaled volatolomics, the characterization of volatile organic com-
pounds (VOCs) in human breath, allows the evaluation of diagnostic and 
prognostic biomarkers in cancer [5–7]. Gastric cancer can generate 
numerous specific VOCs that reflect its core pathological features by 
altering the metabolic mechanism and gastrointestinal microbiota 
composition of the body. Extensive research has confirmed the 

significant potential of exhaled VOCs as biomarkers for the non-invasive 
detection of GC [8–10]. However, further translation of this approach 
into the clinic has been delayed for two main reasons. Firstly, the scar-
city of robustly powered clinical trials, combined with a lack of stan-
dardized procedures for the collection, detection, analysis, and 
processing of exhaled VOCs results in poor stability and reproducibility 
of breath test results [11]. Secondly, owing to the complex physiological 
processes and metabolic pathways of exhaled biomarkers, their poten-
tial internal origin has long been debated, hindering their clinical 
application [12,13]. 

In response to these challenges of exhaled biomarkers in the clinical 
detection of GC, our study constructed a comprehensive mass 
spectrometry-based procedure, composed of thermal desorption gas 
chromatography with triple quadrupole mass spectrometer (TD-GC-MS/ 
MS). Coupled with the ReCIVA breath sampler, this procedure achieved 
accurate qualitative and quantitative analysis of 82 exhaled VOCs. In 
addition, we developed an ensemble learning-based framework, taking 
unique advantage of six machine learning algorithms, which 
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successfully identified a biomarker panel of six exhaled VOCs for non- 
invasive screening of GC. Furthermore, we performed single-cell 
sequencing to investigate the generation mechanism of aldehyde and 
short-chain fatty acid markers in GC patients, which revealed potential 
internal sources of GC exhaled biomarkers and provided a robust theo-
retical basis for their application in clinical settings. 

2. Materials and methods 

2.1. Overview of participants and samples 

A total of 157 participants, including 73 gastric cancer patients and 
84 matched controls (including 20 gastritis), were ultimately selected 
for the final analysis. The detailed subject recruitment process was 
shown in Fig. S1. Subsequently, the 157 subjects underwent post hoc 
randomization into discovery and replication cohorts in a 2:1 ratio, 
employing block random assignment. This randomization process was 
meticulously stratified based on three key criteria: (i) the adjudicated 
clinical diagnosis, (ii) the interval from hospital admission to breath- 
testing, and (iii) the clinical diagnostic uncertainty score, facilitated 
by the R package ‘randomizr’. This process resulted in 104 subjects in 
the discovery cohort and 53 in the replication cohort. All participants 
were recruited from Huadong Hospital, affiliated with Fudan University 
in Shanghai, between July 2023 and December 2023. The majority of 
the participants were from Shanghai or the Yangtze River Delta region. 
Thus, their dietary preferences leaned towards lighter options with 
relatively minimal variations in diet patterns. Participants were 
excluded based on pathological criteria if they: (i) had a history of other 
malignant tumors before diagnosis or had token neoadjuvant therapy, 
(ii) suffered from any respiratory diseases, and (iii) were pregnant, 
breastfeeding, or consumed alcohol daily. Informed consent was ob-
tained from each participant before their participation in the study, 
which was conducted in strict compliance with the Declaration of Hel-
sinki and received approval from the Ethics Committee of Huadong 
Hospital (KY 2023K127). Moreover, we added 30 colorectal cancer 
patients (CRC) to further explore and validate the specificity of our 
identified exhaled biomarkers. These patient data were derived from 
other research projects recently focused on the same topic by our 
research group. 

For this study, control volunteers were defined as individuals 
without significant gastrointestinal disease history. This specifically 
excluded those diagnosed with gastric ulcers or any form of gastroin-
testinal cancer. Additionally, individuals with a family history of gastric 
cancer or who had undergone major gastrointestinal surgery were not 
included. We decided to include participants with mild or intermittent 
gastric discomfort but excluded those presenting with severe or persis-
tent symptoms of gastritis. 

2.2. Breath sampling methodology 

Once obtaining informed consent from all patients, we strictly fol-
lowed a standardized sampling procedure using an ReCIVA sampler 
comprised of breath biopsy cartridges and a portable air supply for 
exhaled sample collection. To minimize the interference of dietary 
related confounding factors, we performed sample collection between 
7:00 and 8:00 a.m. after an overnight fast. Patients were also asked to 
rest in the same area for at least 20 min and to rinse their mouth three 
times with clean water before sampling. For each participant, we 
collected two parallel samples of 2 L alveolar breath gas with corre-
sponding ambient samples. Target VOCs were collected in two duplicate 
multi-layer thermal desorption (TD) tubes containing Carbograph 5 TD 
and Tenax/TA (Markes biomonitoring tubes, Markes International Ltd, 
UK). 

2.3. Instrumental analysis 

This study used the TD-GC-MS/MS system to analyze the exhaled 
VOCs of participants. The performance indicators of TD-GC-MS/MS was 
shown in Table S1. Detailed processes and parameters can be found in 
the supplementary materials. 

2.4. VOCs identification and quantitation 

The chemical characteristics of each peak were confirmed by refer-
ence to the National Institute of Standards and Technology (NIST) mass 
spectral library (version 2.3). After confirming the retention time and 
mass spectrum of the target compounds in SCAN mode, quantitative 
analysis was performed in Selected Ion Monitoring (SIM) and Multiple 
Reaction Monitoring (MRM) modes. The Agilent Mass Hunter quanti-
tative analysis software and the Agile2 integrator were used to auto-
matically integrate compound peaks, with manual adjustments made as 
necessary. A combination of external standard curves and internal 
standard normalization was used to quantify 82 VOCs. 

2.5. Construction of baseline models 

We employed six different machine learning algorithms to generate 
risk predictions for malignant tumors and construct baseline models 
[14]. These machine learning algorithms included: Rule-based C5.0 
(C5), Naive Bayes (NB), Multivariate Adaptive Regression Splines 
(MARS), Polynomial Support Vector Machine (SVM), Extreme Gradient 
Boosting Trees (XGB) and Random Forest (RF). To construct each 
baseline model, we randomly split the dataset into a training set (75 %) 
and a test set (25 %). We trained each model through 25 bootstrap 
resamples and used Latin hypercube sampling with a grid size of 50 to 
tune the hyperparameters of each model. The AUC values and accuracy 
of the ROC curve for each hyperparameter combination were calculated 
in each bootstrap resample. Specifically, each baseline model obtained 
optimal hyperparameter combinations derived from 50 training selec-
tions and averaged results from 25 bootstrap iterations [15]. 

2.6. Establishment of a meta model using LASSO 

We constructed the meta-model using LASSO regression based on a 
stacking strategy coupled with a 6-dimensional feature vector. This 
stacking approach facilitates the automatic exploration of different 
baseline models distinct from models built using direct integration 
strategies such as majority voting and average scoring [14,16–18]. By 
intelligently integrating their respective strengths without manual 
intervention, the final meta-model offers improved and more stable 
performance. Additionally, LASSO regression allows for a statistically 
sound feature importance analysis, quantifying the impact of each 
baseline model on the final meta-model’s performance. This advantage 
allows us to more accurately delineate and comprehend the contribution 
of each VOC feature and individual baseline model to the enhancement 
of the final stacking model performance. 

2.7. Feature selection 

To identify exhaled biomarkers with significant information for GC 
classification, we calculated the importance weight of each VOC feature 
using the stacking model. After obtaining the weight of each feature, we 
proceeded with a feature selection process based on the greedy algo-
rithm, analyzing the VOC features one by one according to their 
descending weights [19]. The greedy feature selection began with an 
empty set, subsequently adding features based on their potential to 
enhance classification accuracy. When considering the nth feature, our 
greedy selection approach firstly put it into the set of features that were 
previously selected. This was followed by a thorough evaluation, uti-
lizing ten-fold cross-validation repeated 10 times, to gauge the stacking 
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model’s average performance. If this evaluation indicated a perfor-
mance improvement over the set of previously chosen features, the nth 
feature was retained in the final selection. Otherwise, it was excluded. 

2.8. Single-cell quality control and data processing 

We obtained the single-cell samples from GSE167297 [20]. The 
detailed single-cell data processing process and subsequent analysis can 
be found in the supplementary materials. 

2.9. Statistical analysis 

Statistical analysis was conducted using SPSS version 26 (IBM, 
Armonk, New York, USA) and RStudio (version 4.2.3, RStudio Inc., 
Boston, MA, USA). In SPSS, univariate non-parametric tests (Wilcoxon 
signed-rank) were used to evaluate the differences in exhaled VOC levels 
between gastric cancer patients and the control group, with a P value <
0.05 indicating statistical significance. We used Spearman correlation 
analysis to investigate the association between respiratory markers and 
traditional serum markers. In RStudio, Principal component analysis 
(PCA) was employed for dimensionality reduction and clustering of VOC 
data. 

3. Results 

3.1. Overview of the exhaled volatolomics landscape of GC 

To obtain the exhaled volatolomics landscape of GC, we collected 
314 breath samples from 73 GC patients and 84 matched controls 
(served as NC), chosen based on pathological criteria (see Materials and 
methods). The clinicopathological features, including age, sex, gender, 
TNM classification, and tumor diameter were summarized in Fig. 1A and 
Table S2. Fig. 1A illustrates the sample distribution according to the 
TNM classification, which was further divided into early-stage patients 
(n = 26), advanced-stage patients (n = 40), and patients without staging 
information (n = 7). 

Fig. S2 shows a schematic of the experimental design. We used the 
ReCIVA sampler to collect the breath samples with ambient samples. 
After sample collection, a comprehensive MS-based absolute quantifi-
cation strategy composed of TD-GC-MS/MS was performed to charac-
terize exhaled VOCs from these samples. Analysis of exhaled VOC data 
revealed 86 unique chromatographic feature peaks, among which we 
achieved accurate qualitative and quantitative analysis of 82 VOCs, 
including hydrocarbons (31.33 %), acids (25.81 %), aromatics (16.21 
%), aldehydes (10.03 %), ketones (4.00 %), alcohols (3.48 %), esters 
(1.90 %), sulfur compounds (1.80 %) and others (5.44 %) (Fig. S3 and 
Table S3). Compared to previous breath-based studies using the MS- 
based method, this study identified a greater variety of VOC types to 
achieve a comprehensive exhaled volatolomics landscape of GC 
[21–28]. Principal component analysis (PCA) of VOC data demonstrated 
a basic separation between the GC and NC at the exhaled volatolomics 
level (Fig. 1B). Furthermore, we observed obviously higher butyric acid 
and valeric acid than in NC. In contrast, hexanoic acid, 2-methyl-hexane, 
decane and undecane were found lower level than in NC (Fig. 1C and D). 
These cumulative findings enhanced our understanding of the molecular 
mechanisms of GC through the exhaled volatolomics landscape. 

3.2. Ensemble learning-based selection of biomarkers 

We developed a novel ensemble learning framework named Priori-
tization of Optimal Biomarker Panel for Gastric Cancer (POB-GC) to 
extract specific VOC features from discovery cohort to identify potential 
biomarkers. This framework contained three key steps: (1) construction 
of baseline models; (2) integration of baseline models by stacking 
strategy; (3) application of greedy algorithm for VOC feature selection 
(Fig. 2A). We utilized six machine learning algorithms on the 

volatolomics dataset to generate 150 baseline models (6*25) by 
applying a 0.5 threshold with 25 bootstrap resampling (see Materials 
and methods). These formulated models demonstrated an average AUC 
exceeding 0.74 (Fig. S4). Despite exhibiting decent performance, these 
baseline models did not outperform those in previous studies that 
employed classical machine learning algorithms, evidenced by rela-
tively lower performance metrics [25,26]. Such discrepancy was 
attributable to these models’ optimal performance with extensive 
datasets and their struggle to extract valuable information from limited 
datasets [29]. To address this, we integrated these baseline models into a 
hybrid ensemble learning model through stacking strategy implemented 
by the LASSO regression algorithm. Fig. S5 displays the respective 
proportions of six machine learning algorithms comprising the stacking 
model, with the xgboost algorithm having the highest proportion of 
55.56 %. 

To precisely assess the efficacy of this model, we conducted three sets 
of experiments, corresponding to three distinct ensemble learning 
models derived from amalgamating all 150 baseline models: the stack-
ing model, the average scoring model, and the majority voting model 
[30–32]. Fig. 2B and C clearly demonstrate that the stacking model 
outperformed the baseline models in all metrics (including SP, SN, ACC, 
MCC, F-value, and AUC, confirming that the use of stacking strategy can 
enhance the predictive performance of individual models, consistent 
with numerous previous studies [33,34]. Furthermore, the stacking 
model proved to be a superior classifier than the average scoring model 
and majority voting model, achieving the highest metrics combination 
for SP (0.92), SN (0.96), ACC (0.94), MCC (0.89), F-value (0.94), and 
AUC (0.95) (Fig. 2D and E). This reaffirmed that the stacking model 
could effectively take advantage of individual baseline models for more 
stable and accurate GC prediction. 

We then used the entire exhaled volatolomics dataset as input for the 
stacking model and screened the most significant biomarkers utilizing 
the feature weights provided by this model. Initially, we performed 10 
times of ten-fold cross-validation to obtain the mean weights of each 
VOC feature, which were then ranked in descending order. The greedy 
algorithm was sequentially used to evaluate the top-ranking VOC fea-
tures. For each feature, if its combination with the previously selected 
features realized enhanced performance, this feature would be involved 
in the selected VOC feature set. After feature selection, it was observed 
that when the number of VOC features increased to six, the accuracy of 
this model reached 0.90 without significant further improvement 
(Fig. S6). Therefore, we confirmed the top six VOCs with feature weight 
(including propionic acid, cyclohexane, heptanal, butyric acid, valeric 
acid, and undecane) as the specific exhaled biomarker panel for detec-
tion of GC. Multiple logistic regression revealed these six VOCs bio-
markers were independent predictor for GC (P value < 0.01, β ∕= 0, 95 % 
CI) (Table S4). Importantly, the combination of six biomarkers together 
accounted for an enhanced AUC of 0.92 by multivariate ROC curve 
analysis, compared to the poor diagnostic performance by single one of 
these biomarkers (AUC <0.8) (Fig. S7). 

3.3. Superior performance verified in the replication cohort 

To assess the potential for clinical application, we evaluated the 
performance of the exhaled biomarker panel for GC detection in the 
replication cohort. We recruited 10 cancer-free participants from med-
ical examination as NC and 43 patients including 20 gastritis patients 
(served as NC) and 23 gastric cancer patients (served as GC). We 
examined the expression of exhaled biomarkers in this cohort. The 
Wilcoxon signed-rank test revealed increased propanoic acid expression 
in GC and elevated heptane in NC (P value < 0.05), indicating that 
exhaled biomarkers could differentiate GC from NC in replication cohort 
(Fig. 3A). This panel achieved an AUC of 0.91 with 0.88 accuracy, 0.87 
specificity and 0.90 sensitivity in detecting GC from healthy controls 
(Fig. 3B), accurately identifying 89 % (8 of 9) early GC (stage I and II) 
with 0.92 AUC and 86 % (12 of 14) advanced GC (stage III and IV) with 
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Fig. 1. Exhaled Volatolomics landscape of GC. A Top panel, pie charts of clinical indicators. Bottom panel, sample numbers and multi-omics datasets. B The PCA 
analysis of the 82 VOCs between GC and NC. C Volcano plots displaying the differentially expressed VOCs in GC and NC after applying a two-fold change in 
expression with P < 0.05 (Wilcoxon rank-sum test). D The general density curves visualizing concentration distribution of six differentially expressed VOCs. The x- 
axis corresponded to normalized concentration of individual VOC and the y-axis corresponded to frequency density. 
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0.89 AUC (Fig. S8). It is worth noting that exhaled markers could 
distinguish GC from gastritis patients, achieving 0.82 specificity, 0.85 
sensitivity and 0.86 AUC. Additionally, to further explore the diagnostic 
specificity of exhaled markers for GC, this study incorporated an 

additional cohort of 30 cases with colorectal cancer (CRC). The result 
demonstrated that exhaled biomarkers are capable of distinguishing GC 
from CRC, with 0.79 specificity, 0.84 sensitivity and 0.83 AUC (Fig. S9). 

We then compared the diagnostic performance of the exhaled 

Fig. 2. Identification of potential exhaled biomarkers of GC using POB-GC. A The workflow of POB-GC, including (1) construction of baseline models; (2) integration 
of baseline models by the stacking strategy; (3) application of the greedy algorithm for VOC feature selection. B Radar plot showing the SN, SP, ACC, F-value and 
MCC of the stacking model and six baseline models. C ROC for GC detection based on the stacking model and six baseline models. D Radar plot showing the SN, SP, 
ACC, F-value and MCC of the stacking model, average scoring model (AC) and majority voting model (MV). E ROC for GC detection based on the stacking model, AC 
and MV. 
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biomarkers with the typical serum biomarkers including CEA, CA19-9 
and CA72-4. Fig. 3B shows that the AUC of serum biomarkers was 
0.82, and the AUC of exhaled biomarkers combined with serum bio-
markers could be further improved to 0.94, which indicated this 

combination improved the performance for detection of GC (Fig. 3C). 
Spearman correlation analysis confirmed that exhaled biomarkers 
(propionic acid, butyric acid and valeric acid) correlated with serum 
biomarkers (CEA and CA72-4) (r > 0.3, P value < 0.05) (Fig. 3D and E). 

Fig. 3. The performance verification of exhaled markers in replication cohort. A Violin plot of exhaled marker expression in replication cohort. B ROC for GC 
detection based on exhaled markers and serum markers. C ROC for GC detection based on the combination of two types of markers. D Circle plot showing the 
correlation between exhaled markers and serum markers. Purple representing a positive correlation and pink representing a negative correlation. PrA propionic acid, 
ButA butyric acid, ValA valeric acid, Cyct cyclohexane, Hep heptanal, Und undecane. E The linear fit analysis showing the association of three exhaled markers and 
two serum markers. R correlation coefficient, R2 coefficient of determination. 
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These results demonstrated the ideal performance of the exhaled 
biomarker panel in distinguishing GC from NC. Therefore, the exhaled 
biomarker panel could be a promising and non-invasive approach for GC 
detection in clinics, and the combination of exhaled and serum bio-
markers could further improve the clinical screening of GC. 

3.4. Unraveling the mechanisms behind biomarker generation 

To explore the generation mechanism of exhaled biomarkers, we 

investigated their potential sources in GC through transcriptomic 
profiling and exhaled volatolomics analysis. Single-cell RNA sequencing 
(scRNA-seq) analysis was first performed on a public dataset of GC (see 
Materials and Methods). We gathered eight GC tissue samples and four 
normal gastric tissue from four GC patients. From each patient, three 
samples were collected: one from the superficial layer of the tumor site, 
the other from the deep layer of the tumor site, and the third from a 
normal stomach tissue. After quality filtering, 21,521 cells were detec-
ted, with a median of 1321 genes per cell, of which 18,760 and 3180 

Fig. 4. Single-Cell RNA-Seq analyses of GC and normal gastric tissues. A Cell populations identified in human gastric tissues. The t-SNE projection of 24,701 single 
cells from GC samples(n = 8) and control gastric samples (n = 4). Nine major cell clusters identified are labelled. Each dot corresponds to a single cell and is colored 
according to its cell type. B Heat map displaying DEGs for each cluster. The signal indicates the average expression for each cluster. Representative genes are 
displayed on the right. C Violin plots showing the expression levels of ALDH1A3 in different samples D-F Cluster-specific enrichment of malignant cells evaluated by 
GSEA. NES normalized enrichment score, FDR false discovery rate. 
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cells were collected from GC tissues and normal gastric tissues (served as 
NC), respectively. To generate a comprehensive view, we categorized 
cells into 9 major lineages, including epithelial cells, endothelial cells, 
mast cells, plasma cells, myeloid cells, fibroblasts, isthmus cells, B cells 
and T cells (Fig. 4A) based on well-established marker genes (Fig. 4B and 
Fig. S10). As illustrated in Fig. S11, GC samples exhibited increased 
proportions of T cells, myeloid cells and isthmus cells, whereas 
decreased proportions of epithelial cells and endothelial cells, compared 
to NC samples. We then used large-scale copy number variations (CNVs) 
to distinguish GC cells from normal cells [35,36]. Epithelial cells 
exhibited significantly higher CNVs than other cells, indicating epithe-
lial cells were highly malignant (Figs. S12 and S13). Thus, epithelial 
cells were served as tumor cells in GC, and as normal cells in NC. 

We directly compared malignant cells and normal epithelial cells 
across the 117 metabolism pathways. The results revealed significant 
disorder not only in several typical tumor metabolic pathways including 
oxidative phosphorylation, cell cycle, chemical carcinogenesis-reactive 
oxygen species (ROS), and carbon metabolism but also in some VOC- 
related metabolism pathways comprising fatty acid metabolism, pyru-
vate metabolism, and the tricarboxylic acid cycle. Moreover, we 
observed ALDH1A3 gene deletion in GC samples, which had been 
proved to lead to an increase in endogenous aldehyde in the exhaled 
breath of cancer patients (Fig. 4C) [37]. Therefore, we infer that the 
absence of ALDH1A3 results in the formation of heptanal in GC patients. 
We then characterized these VOC-related metabolic disorder by 
comparing GC cells to NC ones, and ranking these pathways by 
normalized enrichment scores (NES) (Fig. 4D–F). These analyses 
demonstrated that pyruvate metabolism was the most remarkably var-
iable VOC–related metabolic pathway in GC cells (Fig. 4F). Pyruvate 
metabolism was up-regulated in GC cells compared with normal cells, 
accounting for the increase of butyric acid and valeric acid in our vol-
atolomics data. In addition, we infer that cyclohexane and undecane in 
exhaled biomarkers generated during the lipid peroxidation effect of 
reactive oxygen species on cell membrane polyunsaturated fatty acids 
[38–40]. Thus, these scRNA-seq and exhaled volatolomics results 
demonstrated exhaled biomarkers originated from aldehyde oxidation 
and pyruvate metabolism. In conclusion, we have proved the charac-
teristic of disturbed VOC-related metabolism of GC and constructed an 
exhaled biomarker panel based on volatolomics coupled with ensemble 
learning, and this panel can effectively detect GC. 

4. Discussion 

In this pragmatic, non-invasive study, we constructed a compre-
hensive MS-based procedure, composed of a SIM and MRM array, 
coupled with ReCIVA breath sampler to investigate the potential for 
identifying VOCs in patient breath. The improved breath sampler was 
composed of breath biopsy cartridge and portable air supply, which 
together provide minimal contamination from external VOCs to reduce 
background noise. Using this sampler, we collected 2 L alveolar breath 
gas for each participant along with ambient samples between 7:00 and 
8:00 a.m., after an overnight fast. This standardized breath sampling 
procedure minimized the interference of confounding factors (including 
diet, ambient gas, sampling time, etc.), greatly improving the stability 
and reliability of the collected results. The TD-GC-MS/MS system was 
used to enable accurate qualitative and quantitative analysis of 82 
exhaled VOCs with high resolution and sensitivity. The types of VOCs 
identified by this system exceed the results of the current breath-based 
GC studies using MS-based procedure. These advantages provide a 
reliable data analysis for the subsequent screening program of exhaled 
biomarkers. 

Traditionally, biomarker identification in metabolomics or exhaled 
volatolomics mainly relied on statistical methods (such as variance 
analysis and partial least squares discriminant analysis) and simple 
machine learning models (such as random forests and decision trees) [8, 
41,42]. In this study, we innovatively employed the stacking 

strategy-based ensemble learning model, which exhibited excellent 
performance in detecting GC patients. This success can be attributed to 
the stacking strategy which integrates the unique advantages of six 
machine learning algorithms, comprehensively capturing subtle features 
in the exhaled volatolomics dataset [17]. On the basis of the ensemble 
learning model, an exhaled biomarker panel was established using the 
greedy algorithm. Considered as an emerging cancer screening method, 
the performance of exhaled biomarkers is more precise and non-invasive 
than those from serum metabolomics. The successful identification of 
this panel from exhaled volatolomics coupled with stacking model and 
greedy algorithm provides a valuable insight into how to promote 
exhaled VOCs as biomarkers for the early detection of GC. 

Current biomarker-based screening approaches available for GC 
primarily depend on traditional serum biomarkers such as CEA, CA19-9, 
and CA72-4 [43,44]. Apart from these, no other biomarkers have been 
widely accepted and applied in the clinic. However, these markers 
exhibit certain limitations, including an increase of false positives in 
patients with benign gastric disease, owing to lack of specificity for GC. 
Our replication cohort study demonstrated that exhaled biomarkers can 
accurately detect GC from NC. Moreover, the AUC of exhaled bio-
markers could be further improved to an astonishing 0.94 when coupled 
with serum biomarkers, suggesting that exhaled biomarkers comple-
ment the diagnostic shortcomings of serum biomarkers. Our exhaled 
biomarkers could not only serve as an independent signature to detect 
GC but could also be combined with serum biomarkers to provide cli-
nicians with a more comprehensive screening tool, assisting them in 
arranging more appropriate subsequent diagnostic and treatment 
procedures. 

Among these selected biomarkers, there were three types of short- 
chain fatty acids (propionic acid, butyric acid and valeric acid), two 
types of alkanes (cyclohexane and undecane) and one type of aldehyde 
(heptanal). ScRNA-seq analyses revealed that pyruvate metabolism was 
the most significantly up-regulated VOC-related metabolic pathway in 
GC cells, accounting for the increase of butyric acid and valeric acid in 
GC patients. Moreover, we observed ALDH1A3 gene deletion in GC 
samples, which resulted in heptanal increase in GC patients by 
restraining of aldehyde oxidation [37]. In addition, we infer that 
cyclohexane and undecane in exhaled biomarkers are generated from 
the lipid peroxidation effect of reactive oxygen species on cell mem-
brane polyunsaturated fatty acids [38–40]. We have investigated po-
tential sources of exhaled biomarkers in GC by exploring their 
generation mechanism, providing a theoretical basis for their clinical 
application. 

Certain limitations of this study should be recognized. Owing to the 
current limited sample size, we were unable to pool and label patients 
with GC at different stages for training the stacking model. Thus, the 
signatures identified by the stacking model were regarded as common 
characteristics of early and advanced GC, which could be further revised 
as large-scale sampling is in progress. The exhaled biomarker panel was 
constructed and validated in discovery cohort and replication cohort, 
both recruited from Huadong Hospital affiliated to Fudan University in 
Shanghai. The generality of this panel for GC screening in other pop-
ulations requires further investigation. Given the uncertain relationships 
between GC and diabetes or obesity, the performance of this panel could 
be influenced by metabolic-related confounders [45]. Before being 
officially recognized as an early diagnosis approach for GC, this 
biomarker panel must undergo extensive analysis and clinical validation 
in multi-ethnic, multi-center, and large-scale cohorts with strict enroll-
ment criteria. 

In conclusion, we have established an exhaled biomarker panel 
through ensemble learning coupled with a greedy algorithm to improve 
the disease detection process guided by exhaled volatolomics. The ad-
vantages of this panel underscore its potential application in biomarker- 
aided detection of GC. This precise and non-invasive approach offers a 
novel prospect for disease screening through exhaled volatolomics. We 
believe that the appropriate clinical application of exhaled biomarkers 
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could be beneficial to GC patients for accurate detection, resulting in 
more effective treatment and prognosis. 
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