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Abstract
Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired infective diarrhea.
Current methods for diagnosing CDI have limitations; enzyme immunoassays for toxin have low
sensitivity and Clostridioides difficile polymerase chain reaction cannot differentiate infection from
colonization. An ideal diagnostic test that incorporates microbial factors, host factors, and
host-microbe interaction might characterize true infection. Assessing volatile organic compounds
(VOCs) in exhaled breath may be a useful test for identifying CDI. To identify a wide selection of
VOCs in exhaled breath, we used thermal desorption-gas chromatography-mass spectrometry to
study breath samples from 17 patients with CDI. Age- and sex-matched patients with diarrhea and
negative C.difficile testing (no CDI) were used as controls. Of the 65 VOCs tested, 9 were used to
build a quadratic discriminant model that showed a final cross-validated accuracy of 74%, a
sensitivity of 71%, a specificity of 76%, and a receiver operating characteristic area under the curve
of 0.72. If these findings are proven by larger studies, breath VOC analysis may be a helpful
adjunctive diagnostic test for CDI.

1. Introduction

Clostridioides difficile infection (CDI) is the leading
cause of hospital-acquired infective diarrhea. In the
United States, the national burden of infection was
estimated to be around 462 000 cases in 2017, with
patients older than 65 having an in-hospital mor-
tality rate of 8.4% [1]. A major risk factor for CDI
is current or recent treatment with antibiotics, as
one of their off-target effects is the disruption of
the healthy gut microbiota, which allows C. diffi-
cile to dominate vacant ecological niches and pro-
liferate. This population overgrowth results in toxin
production that induces CDI-associated symptoms.
Although diarrhea is its main symptom, CDI can
also result in life-threatening complications in cer-
tain high-risk patients [2]. The key to preventing

severe health outcomes in patients with CDI is early
diagnosis. However, the 2 most common methods
used to diagnose CDI, enzyme immunoassay and
polymerase chain reaction (PCR), are suboptimal by
themselves; enzyme immunoassay has variable sens-
itivity with sensitivities as low as 45% reported [1,
2], and PCR cannot differentiate between infection
and colonization, and both require stool samples for
testing [3]. An ideal diagnostic test that incorpor-
ates microbial factors, host factors, and host-microbe
interactionmight characterize true infection. There is
an unmet need for a quick, on-demand, bedside dia-
gnostic test to diagnose CDI.

Compelling evidence suggests that patients with
CDI have distinct volatile organic compound (VOC)
profiles. Many clinicians who care for patients with
CDI recognize a distinct odor in these patients’ stool
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samples, and recent in vitro studies have identi-
fied specific VOCs associated with C. difficile [4].
However, whether these VOCs are present in breath
is unknown. VOCs produced in the gut can appear
in exhaled breath, having been carried via the blood
to the lungs. As such, there is a compelling case for
identifying a breath VOC profile that could be used
to diagnose CDI. One small study that employed
selected ion flow tube mass spectrometry has already
demonstrated that a selected group of breath VOCs
can be used to differentiate healthy and CDI patient
breath samples [5].

In the present study, we aimed to identify a novel,
more comprehensive selection of exhaled breath
VOCs that can be used to discriminate between
patients with and without CDI and to obtain biolo-
gical insight into risk factors associated with CDI.

2. Materials andmethods

2.1. Study setting and design
This prospective, case-control study enrolled patients
with diarrhea who were hospitalized at a multi-
specialty academic medical center in the USA. The
medical center’s Institutional Review Board approved
the study.

2.2. Screening, inclusion, and exclusion criteria
Patients aged 18 years or older, who were admitted
with or who developed diarrhea during hospitaliz-
ation and were tested for C. difficile by PCR were
considered for inclusion in the study. Patients with
a positive C. difficile PCR test and symptoms com-
patible with CDI who provided written consent were
included in the study. For each enrolled patient with
CDI, the single best age- and sex-matched participant
with a negative C. difficile PCR test the same day was
enrolled as a control. We excluded patients without
a clinical illness compatible with CDI, those who
refused or were unable to give informed consent (e.g.
due to intubation, encephalopathy, delirium, or phar-
macologic sedation), those requiring supplemental
oxygen, and those with CDI in the previous four
weeks.

2.3. Clinical variables
Demographic and clinical information, including
age, sex, selected comorbid conditions (diabetes mel-
litus, chronic kidney disease, chronic liver disease,
inflammatory bowel disease, malignancy, and trans-
plantation) were collected from participants’ medical
records.

2.4. Breath sample collection
One breath sample was collected from each
participant using a breath collection device
(ReCIVA Breath Sampler, Owlstone Medical Ltd,
Cambridge, UK). Exhaled breath was collected
onto a Breath Biopsy Cartridge, which consisted of

Tenax TA/Carbograph 5TD sorbent tubes (Markes
International, UK). The breath collection device
monitored participants’ breathing patterns in real-
time using CO2 and pressure sensors and the system
dynamically determined gates using the real-time
pressure levels. The ReCIVA breath collection device
was configured as outlined in supplementary table
1, such that it collected a broad fraction of exhaled
breath from both the upper and lower airways dur-
ing normal tidal breathing but did not sample while
subjects were inhaling. Each pump pulled pressure-
gated exhaled breath through 2 sorbent tubes, with
1473ml collected in each tube. The breath in each pair
of tubes was later combined into a single sample to
increase the mass of VOCs injected into the thermal
desorption-gas chromatography-mass spectrometer
(TD-GC-MS) for analysis (and, therefore, to increase
signal at the detector) by desorbing both tubes into
the thermal desorber cold trap.

2.5. Breath sample analysis
Samples were received by the Breath Biopsy
Laboratory (Owlstone Medical Ltd, Cambridge,
UK) and manually inspected to identify poten-
tial issues, such as loose sorbent tube end caps.
Samples were dry purged with helium on a TD100
thermal desorber (Markes International) to remove
excess moisture and subsequently analyzed by TD-
GC-MS. Tube desorption was performed using a
TD100-xr thermal desorption autosampler (Markes
International). Each sample consisted of two sorbent
tubes, both of which were desorbed into the thermal
desorber cold trap for a single analysis. Samples were
then transferred onto a Quadrex 007–624 column
(30 m × 0.32 mm × 3.00 µm) using splitless injec-
tion. Chromatographic separation was achieved via
a programmed method (40 ◦C–250 ◦C in 86.5 min,
helium carrier gas flow 3.0 ml min−1) on a 7890B GC
oven (Agilent Technologies) and mass spectral data
acquired using an electron ionization time-of-flight
BenchTOF high-definition (HD) mass spectrometer
(Markes International). A cleaning method was run
in between each sample to prevent carry-over.

A quality control sample (sorbent tube spiked
with a known mixture of chemicals) was run in
between every four patient breath samples to mon-
itor the stability of instrumentation. A blank tube was
run every four samples and after every quality control
sample to monitor background. Patient samples were
scaled to the quality control samples run in the same
sequence.

2.6. Extraction of molecular features from breath
samples
2.6.1. Sample curation
Breath samples were curated using an in-house auto-
mated filtering system to quantify the likelihood of
a sample being of sufficient quality. Briefly, the fil-
tering system uses a combination of check-in sample
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tags (loose sorbent tube end caps, samples col-
lected using the wrong breath collection method,
etc) and ReCIVA breath sampler leak metrics (e.g.
volume with less than 90% of the expected volume)
to identify samples with potential collection issues
for further review. Post-processing, column resolu-
tion checks were included to ensure that the ability
to extract high-quality molecular feature (MFs) was
maintained. A sample failing any of these checks was
excluded from the analysis. In this study, 6 samples
were excluded due to collection leaks or low chroma-
tographic resolution.

2.6.2. Retention time alignment
Retention time shifts due to column events can lead
to chromatograms not being aligned. To correct for
this, we used the retention times of known qual-
ity control (QC) compounds from QC samples. For
each QC sample, a piece-wise linear function was
constructed by comparing QC retention times in the
sample to the compound-specific medians across all
QC samples. This piece-wise linear function was then
applied to the retention time axis of breath samples
that were analyzed immediately after a given specific
QC sample.

2.6.3. Feature extraction
Untargeted feature extraction was performed for
samples that passed all curation checks. TD-GC-MS
chromatograms were converted into MF lists for stat-
istical analysis. The process of extracting features
involved identifying a set of characteristics indicative
of a compound (including chromatographic reten-
tion time, spectral peaks defined by themass to charge
(m/z) ratios of the ions present, and their intensit-
ies) and aligning them across all samples to ensure
that the same feature was consistently identified and
extracted when present in any sample from the data-
set. Prior to feature extraction and alignment, a reten-
tion time correction step and file conversion stepwere
necessary. Data were acquired in the Markes pro-
prietary format (.lsc) using the BenchTOF-HD plat-
form. Data were converted from the Markes propri-
etary format to the Agilent Chemstation propriet-
ary format (.d) using TOF-DS version 3.1 (Markes
International) and then converted to the Agilent
MassHunter proprietary format (.d) using GC/MS
Translator version B.07oo (Agilent Technologies).
All data were imported into the ProFinder version
B.10.00 (Agilent Technologies) to perform feature
extraction. The batch recursive molecular feature
extraction (RFE)methodwas used to perform decon-
volution.Deconvolution resulted in a list ofMFs, each
of which consisted of mass spectral ions with similar
chromatographic characteristics. Key RFE method
parameters were retention time of 5–60 min, reten-
tion time extraction window of ±0.3 min, extrac-
tion window of m/z± 100 ppm (low-resolution mass
spectral data), and minimum absolute mass spectral

intensity of 300 counts for the largest intensity ion for
each feature.

TheMFs produced by deconvolution were manu-
ally inspected to check extraction/integration consist-
ency across the entire dataset. MFs that demonstrated
extraction/integration consistency in at least 30% of
all samples during the manual feature inspection by
a chemoinformatic scientist were passed for feature
processing, curation review, and then data analysis.
The list of features was exported from ProFinder as a
.csv file.When a feature was not detected or identified
with satisfactory confidence in a given sample, the
corresponding entry in the feature table was marked
as ‘data missing.’ For compiling the final features
table, features were discarded if they did not appear
in more than 80% of the samples. For the remaining
features, missing values were imputed as described
previously [6].

For each MF of interest, deconvolved mass spec-
tra from samples with the greatest peak areas were
matched to the NIST 17 library mass spectral lib-
rary, and the match was inspected manually to
ensure consistency across samples using MassHunter
Quantitative Analysis software vB.09.00 (Agilent
Technologies). A tentative identity was assigned by
comparing the spectral characteristics of the MF to
those in the NIST library. In addition to a tentat-
ive identity, this analysis also returns a score that
reflects the percentage match with the library spec-
trum. All tentative identities had a match score of
>80%. Scores in this range typically represent a good
match, but even MFs with scores of >90% can be
identified incorrectly owing to the non-specificity of
a given spectral pattern. Therefore, the identities are
best thought of as guides to the general molecular
formula and presence of chemical functional groups
(alcohols, aldehydes, unsaturation, etc). These tentat-
ive identities can be confirmed by comparisons with
true standards. MFs that did not achieve a NIST
match score of >80% were not assigned a tentative
identity and were labeled as MFx, where x is a non-
zero whole number.

2.6.4. Feature preprocessing
Small deviations in peak areas were introduced by
retention time alignment. These deviations were
corrected using the scaling factors derived from
the piece-wise linear functions. Because the breath
samples were analyzed over a long period of time, it
was necessary to correct the peak areas for instrument
variation over analytical sequences. The impact of the
instrument variation was modeled by the equation
Yi,t = Si,tXi, where Yi,t is the peak area of compound i
in analytical sequence t, Si,t is the instrument sensitiv-
ity to compound i over sequence t, and Xi is the true
concentration of compound i in the breath samples.
Assuming that the effect of instrument variation on
compound sensitivity does not depend on compound
identity, Yi,t = Ktγi and γi = δiXi, where γi is the

3



J. Breath Res. 18 (2024) 026011 T M John et al

theoretical peak area for compound iwhen there is no
instrument variation (the target output after scaling),
Kt is the sequence-dependent variation in sensitivity,
and δi is the compound-specific sensitivity constant.
Therefore, to remove instrument variation in the peak
areas attained, the corrected peak area for compound
m from sequence t was computed as γm = Ym,t/Kt.

2.7. Statistical analysis
2.7.1. Data structure
We used principal component analysis to identify
outliers and trends in the data. In checking for pat-
terns or structure in the data, the covariates of interest
were sex, age, body mass index (BMI), processing
time, smoking status, and patient group.

2.7.2. Univariable analysis
TheMann–Whitney U test [7] was used to determine
whetherMF abundance differed significantly between
participants with and without CDI. P-value adjust-
ment using max-T/min-P permutation testing [8]
was performed to correct for multiple testing and
reduce the likelihood of false positives, however no
compounds remained significant after adjustment..
The Wilcoxon signed-rank test [9] was performed to
test if MF abundance differed significantly between
paired participants. Differences in VOC concentra-
tions between CDI patients and their matched con-
trols were assessed using the paired student t-test.

Spearman rank correlation was used for continu-
ous clinical variables such as age, BMI, and creatin-
ine level. The Mann–Whitney U test or, if the cat-
egory contained more than 2 groups, 1-way ANOVA,
was used for categorical clinical variables. The only
comorbidities with enough power and homogen-
eity for statistical testing were diabetes mellitus and
chronic kidney disease, which, along with clinical
variables (age, sex, BMI, smoking status, and creat-
inine level) were tested for associations with VOCs of
interest.

2.7.3. Predictive modeling
After identifying VOCs with a univariable association
with group (case or control), we performed classific-
ation modeling to examine the ability of one or more
compounds to discriminate between case and control
participants. Themodel space was reduced by consid-
ering only MFs with an uncorrected Mann–Whitney
U test P-value of <0.2, which yielded 21 candidate
MFs for use in a predictive model.

A non-linear model was trialed to try and achieve
a better classification performance. The model selec-
ted was quadratic discriminant analysis (QDA), a
more general version of Fisher linear discriminant
analysis [10]. We used step-forward floating selec-
tion to limit the number of MFs used by the model,
thereby reducing the chance of the model overfitting.

2.7.4. Identification of molecules and their potential
biological significance
MFs were assigned tentative identities by matching
their mass spectra with those in a library maintained
by the NIST. We reviewed the scientific literature to
determine these compounds’ routes of biological ori-
gin, metabolism, and/or external exposures, correla-
tions with diseases and disease processes, and asso-
ciations with other biological phenotypes. We per-
formed paired testing to control for any confounding
effects that age or sexmay have had onMF abundance
in the participants’ breath samples.

3. Results

We collected 40 breath samples from 40 patients. We
excluded 6 samples due to collection leaks or chroma-
tographic resolution checks, which left 34 samples (17
from patients with CDI and 17 from patients without
CDI) available for analysis.

3.1. Patient characteristics
The demographic and clinical characteristics of the 34
patients whose collected breath samples passed cura-
tion are presented in table 1. Because this population
was recruited at a hospital, it had a high rate of comor-
bidities; in fact, every participant had at least one lis-
ted comorbidity. Most comorbidities occurred more
frequently among patients with CDI.

3.2. Data structure
A plot of the first 2 principal components colored
by the participant group showed no clear trends
(figure 1, panel a). Coloring the first 2 principal
components by other clinical variables revealed no
trends for age, sex, race, BMI, or smoking status
(data not shown). Coloring samples by their ana-
lytical sequence number revealed a trend in the
second principal component (figure 1, panel (b)).
The samples were analyzed when they were received,
and sequences were ordered chronologically, so this
trend could suggest a degree of time-dependent vari-
ability in the breath samples. The second principal
component could account for about 10.6% of the
variation in the data, but the modest pattern of
samples colored by their analytical sequence suggests
that the chronological sequence cannot account for
all the variation.

3.3. VOCs with different abundances between
paired participants
In total, 65 VOCs were detected and qualified for
inclusion in the final curated dataset. Among these,
4 showed some evidence of association with CDI at
a level of significance of 0.1 (table 2; figure 2). A
lower P-value threshold (P< 0.1) was considered sig-
nificant with only 12 pairs of matched participants
available.
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Table 1. Patients’ demographic and clinical characteristics.

Clinical variable
Patients without CDI,
n= 17

Patients with CDI,
n= 17 All patients, n= 34

Sex
Male 8 9 17
Female 9 8 17

Age, mean± standard deviation, years 55± 13.5 59.7± 16.7 57.4± 14.9
BMI, mean± standard deviation, kg m−2 29.2± 6.9 27.2± 6.7 28.2± 6.8
Current or ex-Smoker 6 8 14
Diabetes mellitus 4 3 7
Coronary artery disease 0 5 5
Heart failure 0 3 3
Chronic kidney disease 2 7 9
ESRD 0 2 2
Chronic liver disease 1 2 3
Inflammatory bowel disease 4 1 5
COPD 1 0 1
Malignancy 2 5 7
Post-stem cell transplantation 1 3 4
Concurrent infection 4 2 6
Othera 7 6 13

Note: Data are no. of patients unless otherwise indicated.

Abbreviations: CDI, Clostridioides difficile infection; BMI, body mass index; ESRD, end-stage renal disease; COPD, chronic

obstructive pulmonary disease.
a Includes A1AT deficiency and cystic fibrosis.

Figure 1. Principal component analysis showing the first 2 principal components. (Panel (a)) The first 2 principal components
colored by subject group. The sample from patient CC1026 on the right side of the plot was flagged as an outlier. (Panel (b)) The
first 2 principal components colored by analytical sequence.

Table 2. Statistically significant breath volatile organic
compounds in 12 pairs of patients with and without Clostridioides
difficile infection.

MF NIST tentative identity Match % P-valuea

MF41 2-Ethyl-1-hexanol 95 0.050
MF23 p-Xylene 93.8 0.084
MF56 Isophorone 75.8 0.099
MF18 Tetrachloroethylene 97.6 0.099

Abbreviations: MF, molecular feature; NIST, National Institute of

Standards and Technology.
a Significance was defined using a P-value of<0.1.

3.4. VOCs with significantly different abundances
between groups
The VOCs whose difference of abundance neared sig-
nificance (P< 0.2) betweenCDI patients and controls

are shown in table 3, and boxplots for the most sig-
nificant MFs (P < 0.05) are shown in figure 3. Of
the 4 most significant MFs, 3 had higher abund-
ances on average in the CDI group (figure 4). n-
Hexane and 3-methylundecane, which are products
of lipid peroxidation, had significantly higher con-
centrations in the CDI group than in the con-
trol group (table 3; figure 3). 2-Phenyl-2-propanol
(also known as cumyl alcohol; MF53) was 2.47-
fold higher on average in the breath samples from
CDI cases than in those from control participants,
but this difference was not statistically significant
(table 3). Tetrachloroethylene (also known as per-
chloroethylene; MF18) was less abundant in the CDI
group than in the control group (figure 3). Analysis
with the unpaired Mann–Whitney U test showed
this difference to be significant (table 3), whereas
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Figure 2. Paired box plots of the 4 molecular features with significant abundance differences between cases and controls after
paired testing.

Table 3. Breath volatile organic compounds with near significant (P < 0.2), and significantly different abundances between patients
with and without Clostridioides difficile infection.

MF NIST tentative identity Match %
Fold change
(case/control) Uncorrected P-valuea

MF2 n-Hexane 81.93 1.3 0.023
MF18 Tetrachloroethylene 97.59 0.7 0.034
MF23 p-Xylene 93.80 1.6 0.039
MF55 3-Methylundecane 89.80 1.2 0.043
MF53 2-phenyl-2-propanol 80.87 2.5 0.065
MF25 4-Heptanone 93.79 2.4 0.069
MF26 o-Xylene 84.98 1.5 0.069
MF16 Toluene 87.05 1.4 0.074
MF36 6-methyl-5-hepten-2-one 95.58 0.7 0.114
MF41 2-Ethyl-1-hexanol 94.98 1.1 0.128
MF56 Isophorone 75.75 1.1 0.143

Abbreviations: MF, molecular feature; NIST, National Institute of Standards and Technology.
a Significance was defined using a P-value of<0.2).

analysiswith the pairedWilcoxon signed-rank test did
not (table 2). 6-Methyl-5-hepten-2-one (MF36) was
detected in breath samples and, like tetrachloroethyl-
ene, its abundance in case samples was lower than
that in control samples, but this difference was not
statistically significant (table 3). Comparedwith those
from controls, breath samples from CDI patients had
higher levels of the aromatic hydrocarbons p-xylene,
o-xylene, and toluene. Analysis with the unpaired
Mann–Whitney U-test revealed the difference in the
p-xylene level between the groups to be significant
(table 3), whereas analysis with the paired Wilcoxon
signed rank test did not (table 2). The unpaired test
also showed that the between-group differences in

the levels of both o-xylene and toluene were not
significant (table 3).

3.5. Classificationmodel performance
QDA with step-forward floating selection identified
9 MFs, yielding a model with a final cross-validated
accuracy of 0.74. The cross-validated accuracy of each
step of the MF selection process is given in supple-
mentary figure 1. A summary of the MFs selected in
order of their selection is given in table 4. This model
had a sensitivity of 0.71, specificity of 0.76, and mean
area under the receiver operating characteristic curve
(AUC) of 0.72. The confusion matrix for this model

6



J. Breath Res. 18 (2024) 026011 T M John et al

Figure 3. Box plots of molecular features showing significant differences between groups.

Figure 4. A volcano plot of all molecular features showing a higher abundance of 3 molecular features, MF23 (p-xylene), MF2
(n-hexane), and MF55 (3-methylundecane), in the Clostridioides difficile infection group.
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Table 4. Breath volatile organic compounds selected by the quadratic discriminant analysis classifier model.

MF NIST tentative identity Match %
Mann-Whitney

P-value
Wilcoxon signed-
rank P-value Effect size

MF2 n-Hexane 81.93 0.023 0.480 0.522
MF18 Tetrachloroethylene 97.59 0.034 0.099 −0.219
MF53 2-Phenyl-2-propanol 80.87 0.065 0.308 0.682
MF26 o-Xylene 84.98 0.069 0.136 0.549
MF25 4-Heptanone 93.79 0.069 0.136 0.720
MF41 2-Ethyl-1-hexanol 94.98 0.128 0.050 0.132
MF46 2,6-Dimethyl-7-octen-2-ol 78.71 0.128 0.272 0.451
MF31 1,2,4-Trimethyl-benzene 71.41 0.151 0.480 0.266
MF50 3-7-Dimethyl-3-octanol 91.29 0.176 0.136 0.251

Note: Features are sorted in order of selection, and P-values are given for both paired and unpaired testing. Effect size

was calculated as Cohen’s d, the difference of 2 groups’ means (control—case), divided by their pooled standard

deviation.

Abbreviations: MF, molecular feature; NIST, National Institute of Standards and Technology.

Figure 5. The receiver operating characteristic curve for the quadratic discriminant analysis model with selected features. The
mean area under the curve was 0.72.

is shown in supplementary figure 2 and the receiver
operating characteristic curve is shown in figure 5.

A QDAmodel with just 2 MFs—n-hexane (MF2)
and tetrachloroethylene (MF18)—yielded a cross-
validated accuracy of 0.67.

4. Discussion

This study provides additional evidence supporting
the development of a viable breath analysis test for the

diagnosis of CDI. We found that a model of 9 breath
VOCs could be used to diagnose CDI with moderate
sensitivity and specificity.

In a previous study in which selected ion flow
tube mass spectrometry was used to analyze VOCs in
samples from 31 patients with CDI and 31 controls,
John et al [5] found evidence that CDI patients have
a characteristic VOC profile. A K-nearest neighbors
classifier model (k= 7) showed excellent accuracy for
identifying CDI, with an AUC of 93%. Because the
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study could not identifymolecules of interest, its find-
ings cannot be compared with those of other studies,
including the current study. In the present study,
using an untargeted approach to identify VOCs, a
QDA model comprising 9 features yielded a sensit-
ivity of 71% and specificity of 76%. The low dia-
gnostic accuracy in the current study may have been
due to the small sample size and the CDI patients’
higher rates of comorbidities. Nonetheless, both stud-
ies suggest that patients withCDI have a characteristic
breath VOC profile.

The sensitivity of CDI testing by breath analysis
such as employed in this pilot study is substantially
better than CDI testing by EIA, although not quite as
good as that of PCR. The specificity of CDI testing
by the breath analysis employed in this study is lower
than that of EIA or PCR.With these operating charac-
teristics, breath testing has potential to be developed
into a rapid, convenient, and inexpensive screening
test. For some patients results of breath testing alone
may be enough to make treatment decisions. Others
will need a confirmatory test with PCR. If the accur-
acy of breath testing can be improved, a smaller pro-
portion of tested patients will need a confirmatory
test.

In our study, the presence of certain VOCs in
the breath of patients with CDI suggested ongo-
ing environmental exposures, including to chemic-
als and pollutants such as di-(2-ethylhexyl)-phthalate
plasticizers, tobacco smoke, and vehicle exhaust.
Compared with controls, patients with CDI had elev-
ated levels of 4-heptanone and 2-ethyl-1-hexanol,
both of which are products in the di-(2-ethylhexyl)
phthalate (DEHP) degradation pathway [11]. 4-
Heptanone is also associated with lipid oxidation
[12], fungal metabolism [13], and the metabolism
of phthalate plasticizers [11, 14, 15]. In neonates,
exposure to these compounds result in changes in
the gut microbiome and altered immune responses
[16]. Previous studies employing headspace analyses
of VOCs showed that 4-heptanone levels in feces from
CDI patients are higher than those in feces from non-
CDI patients with diarrhea of unknown origin [17].
Future studies are needed to determine the role of
phthalate-containing plastics in the pathogenesis of
CDI.

Our findings suggest that, among the VOCs iden-
tified, 4-heptanone is a potential biomarker of CDI. If
4-heptanone is confirmed as such, exposure toDEHP,
which is a metabolic precursor to 4-heptanone, could
be a novel risk factor for CDI. Interestingly, in this
study, patients with chronic kidney disease had sig-
nificantly elevated levels of 4-heptanone, mirroring
previous reports of its association with changes in
renal function [18, 19]. Compared with controls,
patients with CDI had elevated breath levels of the
aromatic hydrocarbon VOCs p-xylene, o-xylene, and
toluene, whichmay reflect exposure to tobacco smoke
or vehicle exhaust, a possibility strengthened by the

fact that smoking is a risk factor for CDI. In the cur-
rent study, however, these VOCs did not stand out as
markers that differentiated patients who were current
(n = 2) or former (n = 12) smokers from those who
were never-smokers.

Compared with controls, CDI patients appeared
to have higher levels of VOCs related to lipid per-
oxidation in their breath samples, as evidenced by
the significantly higher levels of n-hexane and 3-
methylundecane. Lipid peroxidation is a critical step
inC. difficile–mediated colonic damage [20]. The bio-
logical origin of n-hexane involves the non-enzymatic
degradation of unsaturated and polyunsaturated fatty
acids, mostly esterifiedmembrane phospholipids and
stored triglycerides, in response to lipid peroxidation
[21]. n-Hexane is also commonly encountered in
the environment as a solvent used in painting and
industry. Lipid aldehydes, such as heptanal, octanal,
nonanal, and decanal, which are frequently detec-
ted in lipid peroxidation studies [22, 23], were not
among the tentatively identified compounds in the
present study. However, free aldehydes are reactive
and tend to form covalent adducts with proteins and
other macromolecules, so their absence may indic-
ate that these molecules do not get absorbed well
from the gut, or the distance between the intestinal
tract and the lungs is too great for aldehydes to tra-
verse so that they undergo further metabolism in the
liver.

As some Clostridioides species have been repor-
ted to metabolize tetrachloroethylene [24], the lower
levels of tetrachloroethylene in the breath samples
from CDI patients may have been related to the
degradation of the VOC by C. difficile.

Additional analyses that would strengthen our
observations and help further elucidate the role of
breath VOCs in the diagnosis of CDI include the fol-
lowing. First, approaches to quantify DEHP expos-
ure through epidemiological surveys or by meas-
uring DEHP and mono-(2-ethylhexyl)- phthalate
(MEHP) in blood from CDI and control patients
should be considered. Given the possibility of con-
tamination from plastics during sample collection,
the characterization of the hepatic metabolite mono-
(2-ethylhexyl)-phthalate-β-D-glucuronide [25] may
allow a more specific estimation of exposure. Second,
the extent to which C. difficile can metabolize tet-
rachloroethylene should be assessed in vitro [24] to
see if C. difficile, like other Clostridioides species, can
degrade this compound, which would explain its rel-
atively lower levels in the breath of the CDI patients
in the present study. Accomplishing this using head-
space analyses of pure cultures could enable the iden-
tification of additional metabolic products as CDI
biomarkers. In addition, in vitro studies with gene
ablation could determine whether tetrachloroethyl-
ene pathway is essential for C. difficile pathogen-
esis and potentially identify a novel therapeutic tar-
get. Third, these findings should be validated in
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an independent cohort, and the compound iden-
tities should be confirmed in reference to genu-
ine standards, to develop diagnostic, prognostic,
and/or monitoring applications that use metabolo-
mic biomarkers.

Our study had several limitations. First, its small
sample size made it difficult to confirm the valid-
ity of its findings. Second, frequencies of medical
comorbidities like chronic kidney disease and coron-
ary artery were more common, and that of inflam-
matory bowel disease was less common, in patients
with CDI than in controls. This is a limitation of this
small study, and it will be important for future lar-
ger studies to control for these important comorbid-
ities. Third, there is a potential misidentification of
VOCs while matching with the NIST database, whose
data are collected under different analytical meth-
ods, that may have led to inaccurate biological asso-
ciations. Last, the case group hadmore comorbidities
than the control group did, whichmight have affected
the results.

In conclusion, this study identified several VOCs
that are associated with CDI and demonstrates that
a classification algorithm based on the quantitation
of such VOCs can differentiate between patients with
and without CDI.
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