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Abstract

Introduction Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled
breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement
platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident dis-
covery of breath-based biomarkers.

Objectives To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs
in the breath of a heterogeneous human population.

Methods The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous popu-
lation. Owlstone Medical’s Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and
feature extraction was utilized. VOCs were determined to be “on-breath” if they met at least one of three pre-defined metrics
compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical stan-
dards, using retention indexing and high-resolution accurate mass spectral matching.

Results 1471 VOCs were present in >80% of samples (breath and background), and 585 were on-breath by at least one
metric. Of these, 148 have been identified covering a broad range of chemical classes.

Conclusions A robust breath collection and relative-quantitative analysis method has been developed, producing a list of
148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC
identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation
in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved
standardization.

Keywords Volatile organic compounds (VOCs) - Breath analysis - Metabolome - Volatile metabolites - Non-invasive
biomarkers - Breathomics

1 Introduction

Untargeted metabolomics based on mass spectrometry (MS)
can provide insight into human health and disease that may
not be apparent using nucleic acid or protein-based analyti-
cal approaches (Babu & Snyder, 2023). While metabolomic
studies primarily focus on aqueous metabolites in samples
such as blood, urine, and feces, breath is a rich and diverse
matrix containing thousands of different volatile organic
' Owlstone Medical Ltd, Cambridge, UK compounds (VOCs) (Costello et al., 2014; Haworth et al.,
2 Faculty of Health, Medicine and Life Sciences, 2022). The non-invasive nature of breath sampling makes it
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particularly attractive for clinical applications, such as early
diagnosis and ongoing longitudinal monitoring.

However, the validation of clinically useful breath bio-
markers remains limited. This is likely due, at least in part,
to the lack of consistent methodologies and quality controls
across the breath research literature (Issitt et al., 2022; Jia et
al., 2019). To advance the field of breath analysis, there is an
urgent need to develop a robust platform that can accurately
identify the VOCs considered to be genuinely originating
from the breath (which are comprised of endogenous VOCs
derived from metabolic processes and exogenous VOCs,
such as microbiome or dietary compounds). These breath-
borne VOCs need to be distinguished from background
VOCs that arise from the sampling equipment and sur-
rounding air that was inhaled immediately before sampling,
which are unrelated to underlying physiology. Establishing
an accurate and repeatable methodology will expedite the
identification and validation of VOC biomarkers of disease
in future studies.

There are multiple approaches for collecting and ana-
lyzing breath, each with different advantages, limitations,
and challenges (Haworth et al., 2022). Untargeted breath
biomarker discovery workflows are most common, which
often produce data on unknown VOCs or VOCs tentatively
identified by comparison with publicly available standard
libraries, such as those provided by the National Institute of
Standards and Technology (NIST). This increases the risk
of misidentifications due to differences in methodology and
instrumentation between untargeted datasets and reference
libraries, impeding the replication and validation of find-
ings. Accurate identification of the VOCs in a breath sample
requires a comparison to purified chemical standards ana-
lyzed using the same instrumentation and methods (Fiehn et
al., 2007; Sumner et al., 2007). At least one unique chemical
standard is required for every VOC to be identified, but as
this is costly and time-consuming, many studies forego this
critical process.

Another unmet need in the breath field is standardized
methods for background correction (Herbig & Beauchamp,
2014). Many reports have noted the significance of back-
ground contributions to the VOCs observed in breath sam-
ples, which can originate from multiple potential sources
such as ambient air or from breath sample collection equip-
ment (Di Gilio et al., 2020; Westphal et al., 2022). Common
background correction techniques in breath analysis include
the calculation of an alveolar gradient to identify VOCs that
are more abundant in breath (Phillips, 1997), or using a lung
washout with synthetic air to identify VOCs likely to be con-
tributed by inhaled background (Hewitt et al., 2022; Mau-
rer et al., 2014; Schubert et al., 2005; Spanél et al., 2013;
Westhoff et al., 2022). However, the success of background
correction relies heavily on the quality of the background
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measurement. One commonly used method for background
measurements is to take a sample of ambient air in the same
location where breath sampling is being performed, which
neglects compounds originating from the sampling equip-
ment. Since VOCs are ubiquitous in the environment and
therefore can be introduced through multiple components
and points throughout the analytical process (Pham et al.,
2023), it is important to ensure comparable collection and
handling of breath and background samples, of which there
is already a method that has been previously described for
the ReCIVA® breath Sampler (Di Gilio et al., 2020; Doran
etal., 2017).

Other attempts have been made to develop a compen-
dium of breath biomarkers (Drabinska et al., 2021; Kuo
et al., 2020) which are useful assemblies and distillations
of the important literature in this field. However, they also
have the same limitations as the underlying literature. A
general lack of standardization in sampling, analysis, and
identification of VOCs means that it is difficult to quickly
assign confidence to any single observation without review-
ing the underlying literature. In this study, we present a
novel methodology that combines robust breath and back-
ground collection, analytical distinguishing breath VOCs
from background contamination, and VOC identification
against chemical standards. We demonstrate the capability
of this method by presenting a list of high-confidence breath
VOC s identified from a heterogeneous human population.

2 Methods
2.1 Study design and subjects

This observational study was approved by the Reading
Independent Ethics Committee RIEC: 290620-1, all par-
ticipants provided written informed consent. Adults (> 18
years; Cambridge, UK) recruited all met the inclusion cri-
teria, were free of active respiratory infection symptoms or
diagnoses (including COVID-19) and fasted for at least two
hours prior to breath sampling. We also decided to include
some volunteers with various chronic diseases to account
for potential normal variation in the population, and ensure
breadth of VOC detection. All subjects were treated as a
single cohort in statistical analysis as the study’s intention
was not to compare differences between disease and con-
trol. Breath samples were collected from 99 adult volunteers
between January and February 2022. Nine samples were
excluded due to saliva contamination (determined by obser-
vation of saliva/bubbles within the tube) (n=28) or incom-
plete collection volume (z=1). The final analysis consisted
of 90 breath samples and 90 paired system backgrounds
(Table 1). Of the 90 adult subjects, 24 had some type of
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Table 1 Study cohort demograph-  variable Overall Female Male P-value
el T n T w e
the top row, split into columns Age, mean (SD) 44.0(16.6)  44.1(16.7)  44.0(16.6)  0.961
by the overall cohort, and then BMI, mean (SD) 26.2 (6.0) 26.6(7.2) 25.8(4.2) 0515
divided by sex (male and female). ~ Smoking Status, n (%) Current Smoker 5(5.5%) 2 (4.2%) 3(7.2%) 0.521
The mean age, BMI, and standard Ex-Smoker 21 (23.3%) 11 (22.9%) 10 (23.8%)

deviation (SD) for the cohort are Never Smoker 64 (71.1%)  35(72.9%) 29 (69.0%)

fht‘“lvn in ;hg,gp WZO mW&tThe Ethnicity, n (%) Caucasian 62(68.9%)  33(68.8%)  29(69.0%)  0.900
otal n and different percentages .

(%) of the cohort for smoking South Asian 12 (13.3%) 6 (12.52@ 6 (14.03%)

status and ethnicity are shown East Asian 9 (10.0%) 6 (12.5%) 3 (7.1%)

in subsequent rows, with finer Black 5(5.6%) 2 (4.2%) 3(7.1%)

breakdowns outlined Mixed Race 2 (2.2%) 1(2.1%) 1 (2.4%)

chronic disease including type 2 diabetes, high blood pres-
sure, arthritis, and irritable bowel syndrome.

2.2 Breath sampling and analysis

The methodology utilized as part of this study is known as
the Owlstone Medical Novel Insights (OMNI) method, and
will be described in this section. Breath samples were col-
lected using Owlstone Medical’s ReCIVA® Breath Sampler.
The ReCIVA Breath Sampler pre-concentrates breath sam-
ples onto adsorbent tubes, enabling a larger collection of
air volume and offering the potential for greater sensitivity
in detecting low-abundance compounds. Subjects breathed
normally into the ReCIVA mouthpiece with a nose plug
(Supplementary Fig. 1). Approximately 1.25 L of breath
are collected onto each sorbent tube — with the analysis
completed with 2.5 L: 2 tubes for analysis and 2 tubes for
backup. This meant a total of 5 L of breath was collected per
participant. This takes approximately 12—15 min of normal
tidal breathing into the device to collect.

Ambient contamination was minimized using the
CASPER® Portable Air Supply during breath sampling,
which filters ambient air into the ReCIVA (Supplementary
Fig. 1). The CASPER is a portable air supply that takes in
room air, filters it to remove VOCs and particulates, and
supplies it directly into the ReCIVA Breath Sampler for a
subject to breathe into. The CASPER removes VOCs using
a replaceable air filter pack that is filled with activated car-
bon; VOCs from the ambient air are adsorbed to the surface
of the carbon. These tools combined were used to collect
VOCs produced from the subject and eliminate VOCs that
are re-breathed directly from the air in the room. Equal
volumes of matched system background samples were
collected immediately before each breath sample. Using
internal, fast response pressure sensors, the ReCIVA Breath
Sampler can monitor patient breathing patterns in real-time
(see Supplementary Fig. 1). Alongside the paired software,
these sensors estimate when the end-tidal fraction of breath
is being exhaled, and the sampling pumps are automatically
turned on and off at the necessary time to collect that breath

fraction. For background samples, all collection hardware
was configured as if to collect a breath sample, but with the
mouthpiece opening sealed and the software configured to
sample continuously (no selection for specific fractions of
breath). The exact settings are detailed in Supplementary
Table 1.

Breath and background samples were analyzed using the
Breath Biopsy OMNI settings (see Supplementary Materi-
als for more details). The tubes were purged with a TD-100
(Markes International Ltd. Llantrisant, UK) and stored at a
temperature of 4-8 °C for no more than 27 days before anal-
ysis. Breath and their paired background samples were lig-
uid injected with a mix of eight deuterated internal standard
compounds (Supplementary Table 2) solubilized in metha-
nol and analyzed in the same sequence using TD-GC-MS. A
series of straight-chain alkanes (C5-C16) were spiked onto
a separate tube (50ng per alkane) and analyzed within each
analytical sequence, to enable the calculation of retention
indices. Analysis was conducted on the TD (Markes) — Q
exactive Orbitrap (Thermo Fisher Scientific) high-resolu-
tion accurate mass spectrometry platform, utilizing the set-
tings specified in Supplementary Table 3.

ReCIVA and CASPER breath collection, paired back-
ground sampling, TD-GC-MS analysis, and the feature
extraction method are collectively known as the ‘OMNI’
method.

2.3 Feature extraction and data normalization

The resulting breath and background chromatograms (an
example of a breath chromatogram is shown in Supplemen-
tary Fig. 2) were batch processed (spectral deconvolution,
feature group clustering, and library matching to NIST17)
utilizing the OMNI untargeted feature extraction method
in Compound Discoverer (ver. 3.2, Thermo Scientific™),
detailed in Supplementary Table 4. After feature extraction,
all features were normalized using the measured peak area
intensity response of spiked internal standard (IS) com-
pounds to reduce analytical variability associated with TD-
GC-MS. A hybrid correlation-retention time normalization
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method was applied, where the Pearson correlation coeffi-
cients between each feature in each sample and every IS
compound were calculated. Features that had a correlation
coefficient > 0.8 with any IS compound were normalized
using that IS compound’s response. When correlations for a
given feature were below 0.8 for all ISs, the mean peak area
response of the three IS compounds with the closest reten-
tion times to the feature was used for normalization.

2.4 Calculations comparing breath and paired
system background samples

The three metrics were used to compare VOCs in breath
samples and paired system background samples:

1. The standard deviation (SD) metric: A VOC was con-
sidered on-breath if the signal exceeded the mean of the
system background signal plus 3 SDs in at least 50%
of the breath samples from the cohort. A VOC is auto-
matically on-breath if values are observed in less than 4
system backgrounds. Additionally, a feature observed in
breath samples was automatically regarded “on-breath”
if its signal was observed in fewer than 4 system back-
grounds samples only.

2. The paired T-test approach metric: A VOC was regarded
as on-breath if the paired breath/ system background
samples were associated with a fold difference >2 and
paired t-test one-tailed p-value <0.05.

3. The Receiver Operating characteristic area under the
curve [ROC-AUC] metric: A VOC was considered on-
breath if the fold difference between breath and back-
ground was > 1, and the calculated ROC-AUC value
was >0.8.

Each on-breath metric queries the VOC signal detected in
breath samples, with respect to the system background, in
different ways. This increases the confidence of a VOC’s
assignment as “on-breath” if it is calculated as such, by mul-
tiple metrics.

2.5 VOC identification using chemical standards

The candidate identities of on-breath VOCs were deter-
mined by matching the breath data against the NIST library
and cross-checked against the human metabolome database
(HMDB) (Westhoff et al., 2022). All NIST matches with a
similarity index (SI) Match Factor>500 were considered
for confirmation using purified standards. All NIST matches
with a similarity index (SI) Match Factor of 500 or higher
were considered for confirmation using purified standards.
This threshold was chosen to reduce the risk of missing
true matches due to spectral differences between the NIST
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spectra and the experimental data. These differences can
arise from variations in the analytical methods, instruments,
and deconvolution parameters used to generate the spectra.
Specifically, the in-house library data was generated using
Orbitrap-MS, whereas the NIST spectra are based on quad-
rupole mass analyzer data. The VOCs with the highest SI
score and present in the HMDB were prioritized. Addition-
ally, a list of commonly reported VOCs with hypothesized
biological relevance were compiled from a literature search
and added to the candidate list.

A certified reference standard (minimum 95% purity)
was sourced for each candidate compound and analyzed to
generate spectra for matching against on-breath VOCs. Ref-
erence standards were dissolved in methanol, due to its suit-
ability for GC-MS analysis in terms of expansion coefficient
and solubility for each candidate compound. Two to six-
teen standards were grouped into each mix using NIST17-
reported retention index values to minimize co-elution risk.
The prepared chemical mixes were then liquid injected onto
Tenax TA-Carbograph-5TD sorbent tubes resulting in 50 ng
on-tube mass per chemical and analyzed using the OMNI
analytical method (see Supplementary) alongside a C5 to
C16 straight chain alkane RI ladder.

Spectra for individual reference standards were identified
by deconvolution (using Thermo Scientific GC Deconvolu-
tion plugin, using the peak detection settings in Supplemen-
tary Table 3) followed by cross-referencing with the NIST
library (NIST 17 mainlib and replib). A background tube
loaded with methanol was examined to ensure the peaks of
interest were not derived from contamination during ana-
lytical processing. Mass spectral cleaning was performed
to retain only the high-resolution accurate mass fragments
suspected to derive from the reference standards. The final
spectrum of each reference standard confirmed the on-
breath VOC identities. Confirmation relied on the three
breath chromatograms with the highest normalized peak
area intensity demonstrating a successful match (forward
and reverse similarity index (SI & RSI) above 800, retention
index within +/- 2 units). Undetected candidate standards
were re-analyzed at higher concentrations (150 ng on-tube
mass) to increase detection probability.

3 Results

3.1 Distinguishing on-breath VOCs from
background

Following the analysis of the 90 adult breath samples and
paired system backgrounds using the OMNI method, 1471
unique features were present in >80% of breath samples.
Three metrics, detailed in the Methods section, were applied
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to identify the subset of VOCs present in the breath at levels
significantly above those in the system background (hence-
forth referred to as “on-breath”).

Figure 1A shows the total number of on-breath VOCs
that were calculated using each of the 3 metrics. There is a
significant overlap in the subset of on-breath features clas-
sified using each on-breath calculation metric. A total of
585 VOCs were identified as on-breath using any metric,
and, of these, the majority (328/585=56%) were on-breath
by all metrics. Metric 1 was the most stringent, with most
(328/346=95%) of the features identified on-breath using
metric 1 also on-breath by the other two metrics.

Metric 1 includes a flexible cut-off for the frequency of
a VOC'’s appearance on-breath at levels 3 SDs above back-
ground (Fig. 1B). In this analysis, a 50% frequency thresh-
old was applied, restricting the subset of on-breath VOCs to
346 out of the total 1471 (22.3%) features (Fig. 1B). This
threshold was chosen to emphasize the VOCs that are on-
breath in the majority of samples but could be adjusted to
accommodate other analyses. For example, if a more strin-
gent threshold was deemed appropriate, fewer VOCs could
be considered as on-breath.

The three metrics were chosen to provide complimentary
insights into the potential composition of on-breath VOCs.
Equally, metrics of differing stringencies, when combined
into a panel of metrics, may give higher confidence to an
on-breath identification. For example, being on-breath in
multiple metrics at once, or in metrics with lower odds of
a false positive may provide higher confidence that a VOC
is indeed on breath, while still ensuring that a wide range
of potentially on-breath VOCs are still captured by at least
one metric.

metric (%)

on-breath" by standard deviatior

Frequency VOC

Fig. 1 A - Venn diagram showing the numbers of VOCs classified as
on-breath by each metric, along with the number of those VOCs that
have been identified, in brackets. B - Bar chart showing the frequency
with which individual VOCs are classified as on-breath across all

3.2 ldentified VOCs: chemical characteristics

A total of 148 (25% of 585 VOCs on-breath by any metric)
VOCs were able to be assigned identities based on compari-
sons to reference standards analyzed on the same analytical
method in this dataset. A total of 825 purified chemical stan-
dards were run to achieve this; 37% of NIST matches with
SI scores over 800 were found to be the true identity of the
on-breath VOC. Factors impeding the identification of the
remaining on-breath features include poor matches against
the NIST library due to differences in analytical method-
ologies used (as discussed above), logistical considerations
(such as lack of standard availability, safety considerations
and/or prohibitive cost) and potential spectral issues during
deconvolution (such as co-elution or splitting), whereby the
resulting VOC spectra may not be an accurate representa-
tion of a true compound. Possible avenues of further work to
overcome these limitations include considering custom syn-
thesis of standards not readily available off the shelf, along
with applying tailored spectral deconvolution settings for
the peak-rich regions of the breath sample chromatograms.
Of the 148 identified VOCs, 102 are on-breath by all
three metrics, a single identified VOC is on-breath by met-
ric 1 alone, three identified VOCs are on-breath by metric
2 alone, and nine identified VOCs are on-breath by met-
ric 3 alone (Fig. 1A). A substantial portion of the on-breath
VOCs that have been assigned formal identifications
(29/148 =19.6%) were not classified as on-breath by metric
1, but they were on-breath by both metric 2 and metric 3
(Fig. 1A). While the three metrics have substantial overlap
in the VOCs they determine to be on-breath, each metric
contributed unique entries to the final pool of identified on-
breath VOCs and may be appropriate for different VOCs

% of samples in which each feature appears on-breath using metric 1

samples using metric 1. The dotted line indicates the 50% threshold,
restricting the number of on-breath VOCs above this cut-off to 346 of
the 1471 total
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or study designs. Additionally, to include VOCs that are
on-breath in only a subset of the population, due to their
uniqueness to a particular demographic, a separate analysis
was carried out whereby features’ on-breath status was cal-
culated per collected demographic variable, by considering
only the system background samples relevant to the specific
sub-population. This resulted in 3 additional on-breath fea-
tures: two unique to the age 70+ group (one of which was
successfully identified as 1,3-Dimethylcyclohexane), and
one unique to the 30+ BMI group.

A full list of the identities of the 148 on-breath VOCs are
presented in Table 2.

4 Discussion

The challenges in studying breath VOCs are well-known
in the research community. Healthy human breath profiles
have been developed to understand how physiological con-
ditions, including age, gender and circadian rhythms, can
influence breath profiles (Sasiene et al., 2024). However,
differentiation of on-breath compounds from background,
and confirmation of their identities, remain major obstacles
to advancing their applications in diagnostics and clinical
settings. In this study, we present a list of 148 breath-associ-
ated (on-breath) chemically identified VOCs. The integrity
of this data relies on stringent criteria for two key aspects:
distinguishing VOCs from background contaminants and
confirming their chemical identity. The on-breath VOCs
presented in this study have been confidently chemically
identified using MSI standards and were distinguishable
from background contaminants through a robust methodol-
ogy in a heterogenous human population (spanning a range
of ages, BMIs, and ethnicities). On-breath VOCs span 45
chemical classes, indicating that they comprise a diverse
pool of chemical entities, and 62% have been previously
reported in the literature in different biological matrices
such as blood, urine, and fecal matter. However, the identi-
fied VOCs may also not necessarily be consistent with other
studies in the literature due to differences in populations and
analytical methodologies utilized previously.

It is also imperative to emphasize that on-breath VOCs
can include both endogenously and exogenously generated
VOCs (as exogenous VOCs can be very strongly breath-
associated, especially those generated from internal sources
such as the gut microbiome). Although not produced by the
body, exogenous on-breath VOCs can interact widely with
the host metabolome and demonstrate powerful utility in
bridging the gap between research tools and breath-based
clinical applications. One such example is indole, which is
generated by the catabolism of tryptophan, mediated by the
human gut microbiome; elevated levels of indole observed
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in cirrhosis could be explained by impaired hepatic clear-
ance, providing a plausible mechanistic relationship
between a microbiome related VOC and a clinical diagnosis
(Ferrandino et al., 2023). In terms of well-established clini-
cal applications, the gold standard diagnostic test used in
gut health clinics for small intestinal bacterial overgrowth
(SIBO) involves the ingestion of an exogenous substrate
(lactulose). If SIBO is present, this synthetic sugar is metab-
olized by bacteria in the small intestine to produce molecular
hydrogen, detectable on breath. Similarly, limonene, a VOC
generated by dietary exposure was observed to be elevated
in the breath of subjects with cirrhosis compared to con-
trols in multiple studies (Dadamio et al., 2012; Fernandez
del Rio et al., 2015), suggesting that reduced liver function
and impaired hepatic perfusion induce limonene accumula-
tion in the body resulting in elevated levels in breath. These
alterations make limonene a candidate biomarker for non-
invasive cirrhosis detection using a breath test (Ferrandino
et al., 2023).

Acetone, isoprene, and indole can be used as a starting
point to assess the consistency of the results of this study
with breath compositions reported elsewhere, as these are
some of the most abundant and commonly identified breath
VOCs (Drabinska et al., 2021). All three of these compounds
were frequently found to be on-breath within this popula-
tion, supporting the replicability of this study’s results. Iso-
prene has been associated previously with a broad range of
disease states, however, there are doubts over how useful of
a biomarker breath isoprene currently is due to the lack of
specificity to certain disease states, and sensitivity to indi-
vidual breathing patterns and movement (Mochalski et al.,
2023). Breath isoprene has recently been mechanistically
associated with skeletal muscle metabolic activity using a
multi-omic approach (Sukul et al., 2023; Mochalski et al.,
2024), demonstrating endogenous origin. The majority of
breath isoprene is produced through the IDI2 protein that
is only present within skeletal-myocellular peroxisomes
(Sukul et al., 2023), and therefore supports the observa-
tion that breath isoprene abundance increases after exercise
(Chou et al., 2024; Pugliese et al., 2022). This understand-
ing of the body’s mechanistic origin has helped to associ-
ate isoprene with a specific physiological process and could
help establish what clinically useful information could be
gained by the use of breath isoprene as a biomarker.

As the current study only aimed to characterize the com-
position of normal human breath, the identified on-breath
VOCs currently cannot suggest metabolic pathway changes,
however, certain valuable insights can be gained. For exam-
ple, acetic acid and propionic acid were both found to be
on-breath and are two well-characterized short-chain fatty
acids (SCFAs) associated with the gut microbiome. SCFAs
are considered exogenous VOCs because they are produced
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Table 2 (continued)

On-breath status

Metric 2 Met-

Metric 1

% of breath
samples on-

Subclass

Class

InChlI key

On-breath VOC ID

ric 3

(paired
t-test)

(mean + std

dev)

(ROC-
AUC)

breath in by
metric 1
74

TRUE

TRUE

TRUE

Branched unsaturated
hydrocarbons
Olefins

Unsaturated
hydrocarbons

BEQGRRILJLVQAQ-UHFFFAOYSA-N

3-Methyl-2-pentene

TRUE

TRUE TRUE

56

Unsaturated
hydrocarbons
Unsaturated

HGCIXCUEYOPUTN-UHFFFAOYSA-N

Cyclohexene

TRUE

TRUE

TRUE

90

LPIQUOYDBNQMRZ-UHFFFAOYSA-N Olefins

Cyclopentene

hydrocarbons
Unsaturated

TRUE

TRUE

TRUE

Branched unsaturated

hydrocarbons

YKFLAYDHMOASIY-UHFFFAOYSA-N

gamma-Terpinene

hydrocarbons
Unsaturated

TRUE

TRUE

TRUE

Branched unsaturated

hydrocarbons

RRHGJUQNOFWUDK-UHFFFAOYSA-N

Isoprene

hydrocarbons
Unsaturated

TRUE

TRUE

TRUE

Branched unsaturated
hydrocarbons
Olefins

BOFLDKIFLIFLJA-UHFFFAOYSA-N

Isopropenylacetylene

hydrocarbons

TRUE

TRUE

TRUE

79

Unsaturated

PMJHHCWVYXUKFD-UHFFFAOYSA-N

Penta-1,3-diene

hydrocarbons

TRUE

TRUE

TRUE

71

Vinyl chlorides

Vinyl halides

CYTYCFOTNPOANT-UHFFFAOYSA-N

Tetrachloroethylene

by microbial fermentation of dietary fiber and are thought to
diffuse into local blood vessels of the gastrointestinal tract,
travel via the blood, and enter the breath through alveolar
exchange. The microbially-formed gas hydrogen produced
in the gastrointestinal tract is rapidly detectable in the breath
through this mechanism, and is therefore currently used in
the clinic to diagnose conditions such as small intestinal
bacterial overgrowth (Pitcher et al., 2022; Read et al., 1985;
Sachdev & Pimentel, 2013). The abundance level of SCFAs
has been implicated in multiple health contexts, including
cancer, neurogenerative disease, and inflammatory bowel
disease (Duizer & de Zoete, 2023; Majumdar et al., 2023;
Ney et al., n.d.; Parada Venegas et al., 2019; van Vorsten-
bosch et al., 2023; Wang et al., 2023). In addition, their mul-
tiple signaling roles have become increasingly appreciated
for their potential impacts on human health (Louis & Flint,
2017; Miller & Wolin, 1996). Therefore, the SCFAs could
serve as breath biomarkers of disease much like hydrogen
and methane breath tests in the future. Their characteriza-
tion on-breath and the development of reference ranges in
a healthy population is essential for this development, of
which this study provides a useful starting point.

Isoprene, acetic and propionic acid are examples of the
connections between the identified on-breath compounds
and the literature, but there have been many more associa-
tions with a broader range of these compounds with physi-
ological processes in the literature, such as carbon disulfide,
dimethyl sulfide, and dimethyl disulfide (Carrion et al.,
2015; Di Cagno et al., 2011; Grabowska-Polanowska et al.,
2017; Preter et al., 2015). While the mechanism behind the
appearance of certain on-breath VOCs in this dataset remain
unknown, crucially, their identities have been verified. This
suggests that the discovery of novel pathways and a new
understanding of physiological processes can occur if the
levels of these VOCs are found to change in disease cohorts.

In this study, the system background samples were col-
lected from the entire equipment flow path of air to capture
all possible sources of VOC background in the sampling
process. Moisture levels may differ between background
samples and breath. Given that humidity and temperature
are key variables for VOC capture, mitigations have been
implemented to reduce this differential: hydrophobic sor-
bents are used in our TD tubes and all samples are dry purged
prior to analysis. We acknowledge that this minimizes the
carryover risk, but not the instantaneous risk. Despite our
best efforts, breath and blank samples are ultimately differ-
ent sample types and there may be small analytical differ-
ences introduced as a result. We did not consider this to have
a major impact to the conclusions we draw from this article.

The analytical methodology utilized offers high mass
accuracy and resolution capability, resulting in precise
mass measurement of ions and separation of closely spaced
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mass peaks. These functionalities provided high specific-
ity by accurately determining molecular formulas and dis-
tinguishing between different VOCs with similar masses,
respectively, thereby increasing the accuracy of VOC iden-
tification. For background correction, this study built on
the alveolar gradient approach and utilized three metrics to
compare breath and background signals, which can account
for the variability of VOCs in the samples while also being
practical for field implementation. Stringent processes were
applied to the identification of VOCs using reference stan-
dards run on the same analytical method and instrument,
accurate mass (within 5 ppm tolerance) to compare frag-
mentation spectra, and an alkane ladder to enable a strict RI
match. VOCs were only identified if they could be character-
ized as “on-breath” by pre-defined metrics used to compare
breath to representative system background samples. These
metrics are intended to capture the widest range of on-breath
VOCs, while providing sufficient stringency. In the future,
they can be used alone or in combination, depending on the
study design and VOCs of interest. The multiple metrics not
only expand our knowledge of common on-breath VOCs
but also allow differentiation from background, increasing
confidence when comparing VOCs across different study
cohorts and methodologies.

Despite the stringent methodology used to exclude back-
ground contaminants, it is still likely that certain on-breath
compounds arise from processes unrelated to underlying
physiology. It is also possible that some breath VOCs may
be currently below our effective detection limit due to the
presence and variation of VOCs in the background, and
systematically reducing background contamination could
improve this. The list of on-breath VOCs provides a start-
ing point for this work, as targeted analyses can help iden-
tify where background contamination may be reduced and
which specific chemicals, or groups of chemicals are likely
to be affected. Future work will expand the capabilities of
detection via sampling onto different sorbent beds and using
different GC-column chemistries, broadening the range of
VOC:s covered. This study included a heterogeneous cohort,
enabling a comprehensive characterization of breath com-
position. It is likely that VOCs will be significantly elevated
in diseased cohorts such that they may be characterized as
on-breath in diseased populations alone. Therefore, future
efforts should focus on identifying and quantifying on-
breath VOCs in both heterogenous and diseased populations
to build a platform for cross-population comparison.

The on-breath VOCs identified in this study can offer util-
ity to the breath field in numerous ways: they can serve as tar-
gets for optimizing breath measurement platforms, enabling
efficient and accurate identification of potential biomarkers.
With appropriate controls, these VOCs may also facilitate
comparison of data across studies for cross-validation of

@ Springer

results. Furthermore, the list of VOCs can be utilized to
optimize precise and accurate measurement of breath via
informed selection of patient preparation, breath collection,
sample storage, and sample analysis. This optimization pro-
cess will preserve biological variability while minimizing
technical variability, thereby advancing the reliability and
reproducibility of breath-based biomarker research. This
list of chemically confirmed on-breath VOCs distinguished
from background contaminants lays the foundation for the
development of the Breath Biopsy VOC Atlas®, an ongoing
project to develop a database of chemically identified breath
VOCs complete with on-breath status, and quantified refer-
ence ranges across different cohorts, including different dis-
ease states. Biological interpretation of VOCs in the breath
will significantly help to confidently assign on-breath VOC
status, and therefore adding mechanistic understanding
of breath VOCs in the literature is important future work.
Work is ongoing to build the VOC Atlas as a reference data-
base on confirmed compounds in the breath alongside their
scientific context in the literature, utilizing the robust OMNI
method and the on-breath VOC list presented in this work.

5 Conclusion

Through the development of a robust methodology, this
study collected and compared breath and background
samples of a heterogenous human population to identify
on-breath VOCs. These on-breath VOCs can serve as a
reference for breath researchers to improve confidence
that their results are capturing truly on-breath VOCs, and
it will continue to expand as additional VOCs are identified
using reference standards. Future work will expand the list
to include a broad range of populations and physiologies
to capture the diversity of on-breath VOCs. By continuing
to compare background samples collected and analyzed in
the same manner as their breath samples, VOCs confidently
identified as being on-breath can be the basis for future bio-
marker investigations.
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